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Abstract
The problem of deriving a complete set of aerosol optical properties from Sun

and sky radiance measurements is discussed.  The algorithm development is focused on

improving aerosol retrievals by means of including a detailed statistical optimization of

the influence of noise in the inversion procedure.  The methodological aspects of such

an optimization are discussed in detail and revised according to both modern findings

in inversion theory and practical experience in remote sensing.  Accordingly in the pro-

posed methodology, the optimized inversion algorithm is built on the principles of sta-

tistical estimation: the spectral radiances and various a priori constraints on aerosol

characteristics are considered as multi-source data that are known with predetermined

accuracy.  The inversion is designed as a search for the best fit of all input data by a

theoretical model that takes into account the different levels of accuracy of the fitted

data.  The algorithm allows a choice of normal or log-normal noise assumptions.  The

multivariable fitting is implemented by a stable numerical procedure combining matrix

inversion and univariant relaxation.

The theoretical inversion scheme has been realized in the advanced algorithm re-

trieving aerosol size distribution together with complex refractive index from the spec-

tral measurements of direct and diffuse radiation.  The aerosol particles are modeled as

homogeneous spheres.  The atmospheric radiative transfer modeling is implemented

with well-established publicly available radiative transfer codes.  The retrieved refrac-

tive indices can be wavelength dependent, however the extended smoothness con-

straints are applied to its spectral dependence (and indirectly through smoothness con-
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straints on retrieved size distributions).  The positive effects of noise statistical optimiza-

tion on the retrieval results as well as the importance of applying a priori constraints are

discussed in detail for the retrieval of both aerosol size distribution and complex refrac-

tive index.  The developed algorithm is adapted for the retrieval of aerosol properties

from measurements made by ground based Sun - sky scanning radiometers used in the

AErosol RObotic NETwork (AERONET).  The results of numerical tests together with

examples of experimental data inversions are presented.

1. Introduction
Recently there have been numerous studies focused on measuring and inter-

preting aerosol optical properties, e.g. SCAR-B [Kaufman, et al., 1998], TARFOX [Russell,

et al., 1999], ACE-1 [Bates, et al., 1998], ACE-2 [Heintzenberg and Russell, 1999] and

INDOEX [Ramanathan, et al., 1996], etc.  Especially high expectations are associated with

satellite and ground based remote sensing (e.g., see King et al. [1999], Kaufman et al.

[1997]); however, not every required radiative property can be measured remotely.

For example, the angular and spectral ranges of remote measurements of atmospheric

radiation are always limited.  Correspondingly, a core aspect of remote sensing is the

inversion procedure, whereby aerosol optical and radiative properties are derived from

the remote sensing measurements.  In the past three decades, a number of inversion

methods have been proposed for interpreting the measured radiative characteristics of

the cloud free atmosphere.  For example, the algorithms of King et al. [1978], Nakajima

et al. [1983, 1996] and Wang and Gordon [1993] etc. developed for deriving aerosol opti-

cal properties from atmospheric radiances are well established.  These methods differ in

the set of retrieved aerosol parameters and/or set of required input radiative charac-

teristics.  The present paper describes an inversion strategy focused on retrieving an ex-

tended set of aerosol parameters from multi-angular and multi-spectral measurements

of atmospheric radiances.  The purpose is to maximize the retrieved aerosol informa-

tion by inverting simultaneously all available measurements of atmospheric radiances.

Namely, in the present paper we pursue the simultaneous retrieval of aerosol particle

size distribution and complex refractive index from spectral optical thickness measure-

ments combined with the angular distribution of sky radiance measured at different

wavelengths.
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Our retrieval developments are consistent with the developments by King et al.

[1978] and Nakajima et al. [1983,1996] for retrieving the particle size distribution of aero-

sol in the total atmospheric column.  The method of King et al. is used to invert spectral

measurements of optical thickness only, whereas the method of Nakajima et al. is used

to invert the angular distribution of sky radiance (with or without spectral optical thick-

ness).  It should be noted that the method of Nakajima et al. adequately accounts for

multiple scattering effects in the whole range of the scattering angles.  This was an im-

portant improvement over earlier sky radiance and optical thickness inversion algo-

rithms (c.f. Twitty [1975], Shaw [1979] and O’Neill and Miller [1984]) which were limited

to the aureole region where single scattering or quasi-single scattering models can be

applied.  All of these methods model aerosol particles as homogeneous spheres with

refractive indices assumed a priori.  Concepts for the determination of the aerosol parti-

cle refractive index from multi-angular radiance measurements were developed by

Wendish and von Hoyningen-Huene [1994] and Yamasoe et al. [1998].  These methods are

based on the principle of partial separation of the effects of refractive index and size dis-

tribution on the angular variability of sky radiance.  Our approach is significantly differ-

ent from earlier studies in that we implement simultaneous retrieval of the particle size

distribution and complex refractive index via simultaneous fitting of radiances meas-

ured in the entire available angular and spectral range.  Such an approach should pro-

vide a higher retrieval accuracy through adoption of sophisticated mathematical proce-

dures.

The inversion methodology considered in the present paper addresses the simul-

taneous retrieval of a large number of significantly different parameters from multi-

source data.  For example, direct Sun and diffuse sky radiance are measured by sensors

with different sensitivities and the accuracy requirements on measurements of direct

Sun radiation and diffuse sky radiance are rather different.  Such accuracy differences

should be taken into account when making multi-source data compatible.  Similarly, the

aerosol particle size distribution and complex refractive index are fundamentally differ-

ent parameters.  Correspondingly, the design of an algorithm for retrieving these char-

acteristics should congruously rationalize the differences in units, ranges of variability,

etc.  Developing any inversion algorithm demands two kinds of effort from the devel-

oper.  First of all, accurate forward modeling of measured atmospheric characteristics is
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required.  The second necessary component of an inversion algorithm is a formal nu-

merical procedure that utilizes a mathematical inverse transformation, which is not lim-

ited in its application to inversion of atmospheric radiances and can be used in any re-

trieval algorithm.  In the following sections we will discuss both of these aspects.

For modeling atmospheric radiances we adopted standardized, publicly available

software.  This approach allows for the possibility of easily replacing one code with an-

other as radiative transfer theory advances.  In keeping with the strategy in forward

modeling strategy, we pursued a similar goal of making the entire algorithm flexible

and adjustable.  In designing the algorithm, we tried to anticipate the possibilities of up-

grading forward modeling codes with new advanced versions and expanding the code

applicability for new applications (e.g., accounting for light polarization, detailed charac-

teristics of surface reflectance, incorporating particle non sphericity, etc.).

We pursued a similar objective in implementing the numerical inversion trans-

formations in our retrieval algorithm.  However, in addition to this objective, designing

a numerical inversion algorithm requires clarification of inversion principles.  Indeed,

forward models differ mainly in the accuracy of describing a physical phenomenon and

the speed of calculation.  Accordingly, for practical applications, one always chooses the

most accurate model provided it satisfies the time constraints.  Choosing the best inver-

sion method, on the other hand, is a more complicated task, in that the evaluation of

inversion accuracy is an ambiguous question, especially for a case of the simultaneous

retrieval of several variables.  For example, replacing a scalar model of light scattering

by a model accounting for polarization doubtless results in accuracy improvements in

scattered light estimation.  In contrast, retrieval errors are not so directly responsive for

different retrieved parameters.  Retrieval accuracy may improve for one parameter but

degrade for another parameter as the result of a change of inversion methods.  Corre-

spondingly, the preference between inversion methods is always rather uncertain.

 Detailed reviews of currently used methods can be found in various books, e.g.

Twomey [1977], Tikhonov and Arsenin [1977], Houghton et al. [1983], Tarantola [1987].

However, the existence of a variety of different well-established inversion procedures

creates an uncertainty for researchers in understanding how to choose the optimal

technique for inversion implementation.  For example, the widely used book by Press

et al. [1992] proposes a diversity of inversion methods, however it does not direct the
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reader with explanations as to which method and why it should be chosen for a par-

ticular application.  Such a situation is partly a result of the fact that most innovations

were proposed under pressure of different specific practical needs and derived in rather

different ways.  In the present paper, we follow the inversion strategy proposed and

refined in the previous studies by Dubovik et al. [1995, 1998a].  This strategy is focused

on clarifying the connection between different inversion methods established in atmos-

pheric optics and unifying the key ideas of these methods in a single inversion proce-

dure.  Correspondingly, this strategy is rather helpful for building optimized and flexi-

ble inversion techniques.  For example, in Sections 3 and 4.2 we outline the important

connections of designed retrieval algorithms with the inversion methods widely

adopted in the application of atmospheric optics and remote sensing, such as the meth-

ods given by Phillips [1962], Twomey [1963, 1977], Tikhonov [1963, 1977], Chahine [1968],

Rodgers [1976], etc.

The effort of algorithm development was initiated under the AERONET (AErosol

RObotic NETwork) project [Holben et al., 1998] with the purpose of meeting the high

requirements of aerosol parameter retrieval accuracy needed for satellite data valida-

tion and improved understanding of the radiative effects of aerosols.  Therefore, the

discussion of the algorithm design and retrieval accuracy will be focused on the inter-

pretation of radiances measured by AERONET ground based Sun - sky scanning radi-

ometers.

2. Forward modeling
The AERONET network provides globally distributed near real time observa-

tions of aerosol spectral optical thickness and sky radiance as well as derived parame-

ters such as particle size distributions in a manner suitable for integration with satellite

data.  This network has been developed to provide aerosol information from two kinds

of ground-based measurements: spectral data of direct sun radiation extinction (i.e.,

aerosol optical thickness) and angular distribution of sky radiance.  An inversion algo-

rithm is required for the retrieval of aerosol size distribution, complex refractive index,

single scattering albedo, and phase function.  Below, in this Section, we discuss the con-

cept of atmospheric radiance modeling, which we employ in our retrieval algorithm.
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2.1 Radiative transfer modeling

The atmospheric sky radiance can be modeled by solving the radiative transfer

equation for a plane -parallel atmosphere.  The angular distribution of diffuse down-

ward radiation can be described by:

I F m
m m

m m
P GΘ Θ;

exp exp
; ...λ

τ τ
ω λ( ) =

−( ) − −( )[ ]
−

( ) + ( )( )0 0
0 1

0 1
0 

  
    , if  θ θ≠ 0 (1a)

I F m m P GΘ Θ; exp ; ...λ τ ω τ λ( ) = −( ) ( ) + ( )( )0 0 0 0       , if  θ θ= 0 , (1b)

where I Θ;λ( ) is the spectral sky-radiance measured at different wavelengths and at dif-

ferent scattering angles Θ ; F0 the exoatmospheric flux; θ0 solar zenith angle; θ the ob-

servation zenith angle; m the air mass (m0=1/cosθ0, m1=1/cosθ); τ τ λ= ( )ext  the spectral

extinction optical thickness; ω ω λ0 0= ( ) the single scattering albedo; and P Θ;λ( )   the

phase function at different wavelengths.  The term

G G P A... ; ; ; ; ; ; ;( ) ( ) ( ) ( ) ( )( )= extω λ τ λ λ λ θ θ φ0 0Θ  describes the multiple scattering effects,

where φ is zenith angle of observations and A λ( ) is the spectral surface reflectance.  The

above equation is written for a homogeneous atmosphere, without accounting for po-

larization effects and for angular independent ground reflectance (Lambertian ap-

proximation).  At present, there are a number of well-established and publicly available

codes to account for multiple scattering in diffuse radiance.  For example, in our studies

we have used two independent discrete ordinates codes developed by Nakajima and

Tanaka [1988] and Stamnes et al. [1988].  These codes allow for the inclusion of the verti-

cal variability of atmospheric properties by dividing the atmosphere into a number of

homogeneous layers.  In these models, different optical thickness, phase function, and

single scattering albedo characterize each layer.

The modeling of τ λ( ), ω λ0( )  and P Θ;λ( )  requires consideration of three main

components under cloud-free conditions: gaseous absorption, molecular scattering, and

aerosol scattering and absorption.  These three atmospheric components comprise the

total optical characteristics of an atmospheric layer as follows:

τ λ τ λ τ λ τ λ τ λext
total

scat
aer

abs
aer

scat
mol

abs
gas( ) = ( ) + ( ) + ( ) + ( ), (2)

ω λ τ λ τ λ
τ λ

τ λ
τ λ0

total scat
aer

scat
mol

ext
total

scat
total

ext
total    ( ) = ( ) + ( )

( )
= ( )

( )
, (3)
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P P Ptotal scat
aer

scat
total

aer scat
mol

scat
total

molΘ Θ Θ; ; ;λ τ λ
τ λ

λ τ λ
τ λ

λ( ) = ( )
( )

( ) + ( )
( )

( ) , (4)

where τ λext
aer ( ) is the aerosol optical thickness of the layer; ω λ0

aer ( )  the aerosol single

scattering albedo; and Paer Θ;λ( )  the aerosol phase function.  In the case of ground-

based measurements of solar radiation, strong gaseous absorption can be avoided by

instrumental design.  Molecular scattering can easily be calculated from the surface

pressure at the time of measurements.  For instance, the specified wavelengths of the

four AERONET sky radiometer spectral channels (440, 670, 870, and 1020 nm) were

carefully selected to avoid strong gaseous absorption [Holben et al., 1998].  Slight ozone

absorption is accounted for from climatological data.  The values of surface reflectance

A(λ) are also accounted for a priori, in spite of the fact that A(λ) can vary significantly

depending on climatological and meteorological conditions.  Indeed, uncertainty in a

priori knowledge of surface reflectance A(λ) is usually not critical for modeling of

downward solar radiation for two primary reasons.  First, in most situations, unre-

flected solar light dominates over reflected light in the downward radiation field and

accuracy requirements on a priori estimates of A(λ) are modest.  Second, it is expected

that values of A (λ) can in some cases can be available from accompanying measure-

ments of upward radiation.  Thus, local variability of atmospheric radiance I Θ;λ( ) de-

pends primarily on the optical properties of the aerosol particles, and for convenience

of further discussion we can write:

I I PΘ Θ; ; ; ;λ τ λ ω λ λ( ) = ( ) ( ) ( )( )ext
aer aer aer  0 . (5)

All of these properties (τ λext
aer ( ), ω λ0

aer ( ) , Paer Θ;λ( )) are highly variable and will be con-

sidered below as unknown characteristics that can be retrieved from multi-angular and

multi-spectral radiance data.  In reality, aerosol properties vary in the vertical direction

and a multi-layer model of the atmosphere is required, in order to account for the verti-

cal variations inτ λ( ), ω λ0( )  and P Θ;λ( ) .  However, radiances measured at the ground

are influenced by the whole atmospheric column and are not expected to be strongly

dependent on the vertical distribution of aerosol.  Consequently, most ground-based

retrievals characterize the optical properties of the aerosol in the total atmospheric col-

umn (columnar aerosol).  In our present study we focus accordingly on designing an

algorithm for the vertically homogeneous atmosphere.  The strategy of accounting for

a vertical variability in the atmosphere will be outlined later in Section 4.
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This inversion of atmospheric radiance can naturally be designed for the retrieval

of the optical characteristics of columnar aerosol (τ λ( ), ω λ0( )  and P Θ;λ( )).  For in-

stance, Wang and Gordon [1993] and Box and Sendra [1999] employ such an inversion

strategy in their retrievals.  Alternatively, the inversion can be focused on retrieving pa-

rameters of aerosol microstructure, such as particle size, number, etc.  We will utilize

this approach by extending the ideas previously developed in the papers of King et al.

[1978] and Nakajima et al. [1983, 1996].

2.2 Microphysics modeling of aerosol optical properties

The modeling of optical parameters via parameters of microstructure is a rather

common way of light scattering characterization in both laboratory and remote sensing

methods  (cf., McCartney [1977]).  For example, the aerosol optical parameters (phase

function (P( Θ )) , optical thickness of aerosol extinction, scattering and absorption

(τext(λ); τscat(λ); τabs(λ))) can be modeled from microstructure parameters using the

following approximations:

τ λ λ π
λ

λscat scat  n  ( ) ( ) = 



 ( ) ( )∫P K m r r dr

r

r
Θ Θ; ; ; ˜ ;

min

max2
, (6)

τ λ π
λ

λτ... ...
min

max
; ˜ ;( ) = 



 ( ) ( )∫2

K m r r dr
r

r
 n  , (7)

where r is particle radius, n(r)= dN(r)/dr denotes particle number size distribution,

Kscat ...( )  is a scattering cross section
 

and
 

Kτ...
...( )  is an extinction cross section

(
λ π
2

2r Qext ...( ) , where Qext ...( )is the Mie extinction efficiency factor).  In our studies we will

assume aerosol particles are spherical.  Correspondingly, the functions Kscat ...( )  and

Kτ...
...( )  will be approximated by Mie functions derived for spherical and homogeneous

particles characterized by a complex refractive index :

m̃ n i kλ λ λ( ) = ( ) − ( ) .

Eqs. (6)-(7) allow one to consider size distribution and refractive index of aerosol parti-

cles instead of directly considering τ(λ), ω0(λ) and P(Θ;λ) of the aerosol.

Finally, atmospheric radiance I Θ;λ( ) given by Eq. (5) can be defined via Eqs. (6)-

(7) as a function of the parameters of aerosol microstructure:

I I dN r dr mΘ; ; ˜λ λ( ) = ( ) ( )( ) . (8)
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Thus, Eqs. (5) and (8) represent two different strategies of atmospheric radiance

modeling.  We focus the inversion on retrieving parameters of the aerosol microstruc-

ture.  In this case, some relationship between optical thickness, single scattering albedo,

and phase function is implied by assuming the aerosol particles are homogeneous

spheres, as in Eq. (8).  Additional discussion on details of atmospheric radiance model-

ing will be given in Section 4.

3. Inversion Strategy
To formulate the criteria of inversion optimization we employ principles of sta-

tistical estimation theory (cf., Edie et al. [1971]).  Accordingly, in designing the retrieval

algorithm we account for the character and level of uncertainties in the initial data.  This

is especially important when we invert the data measured under different experimental

conditions (i. e., data from different sources).  Therefore, inversion of multi-source data

is a subject of particular consideration here.

Using a priori constraints is an another key aspect, which requires a detailed de-

liberation.  Phillips [1962], Twomey [1963] and Tikhonov [1963], have shown that apply-

ing a priori constraints (e.g., the smoothness of retrieved functions) is a critical compo-

nent of designing a successful inversion with many parameters.  Choosing the strength

of a priori constraints is, however, an especially challenging problem (e.g., Rodgers

[1976], Twomey [1977], King [1982]), which becomes even more challenging when such

different parameters as particle size distribution and complex refractive index are re-

trieved simultaneously.  Our strategy is to consider measurements and a priori knowl-

edge together as a single set of multi-source data.  Thus, the current Section discusses

the principles of inversion optimization, which are the same for both measured and a

priori data.  The specific questions of applying a priori constraints are discussed in detail

in Section 4.2.

3.1 Statistically optimized inversion of multi-source data

The inversion is designed as a search for the best fit of all data considered by a

theoretical model taking into account the different magnitudes of the accuracy of the

fitted data.  The errors in all inverted data are determined statistically.  Both measured

and a priori data are separated into groups assuming that data obtained from the same

source (i.e., in the same way) have a similar error structure, independent of errors in
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the data obtained from other sources.  For example, direct Sun and diffuse sky radi-

ances have different magnitudes and are measured by sensors with different sensitivity,

i.e., errors should be independent (due to different sensors) and will likely have differ-

ent magnitudes.

Formally both measured and a priori data can be written as follows:

f a f ak k k
∗( ) = ( ) + ∆ (k=1, 2,…,K), (9)

where the vectors f1 and f2 relate to sky and Sun radiance measurements at four stan-

dard AERONET wavelengths.  The vector a denotes the aerosol parameters which

should be retrieved.  The vectors fk>2 include the values of a priori constraints on aerosol

parameters or possible accessory data.  The asterisk “*“ denotes the data uncertainty

∆k.

Numerous studies have shown that the normal (or Gaussian) distribution is the

most expected and appropriate function for describing random noise (detailed discus-

sions can be found in the books by Edie et al. [1971] and Tarantola [1987]).  The normal

Probability Density Function (PDF) for each vector fk
* of initial data can be written in

the form:

P f a f C f a f C f a fk k
m

k k k
T

k k kexp( )( ) = ( ) ( )( ) − ( ) −( ) ( ) ( ) −( )





∗ − ∗ − ∗2
1
2

1 2 1π det
/

, (10)

where T denotes matrix transposition, Ck is the covariance matrix of the vector fk;
det(Ck) denotes determinate of Ck, and m is the dimension of vectors fk and fk

*.  The

vectors fk
* are obtained from different sources and accordingly statistically independent.

This is why the joint PDF of all inverted data can be obtained by simple multiplication of

the PDF of all vectors fk
* as follows:

P Pf a f a f f f a f f a f C f a f1 K 1 K k k
k

K

k k

T

k k k
k

K

 ~  exp( ) ( )( ) = ( )( ) − ( ) −( ) ( ) ( ) −( )





∗ ∗ ∗

=

∗ − ∗

=
∏ ∑,.., ,...,

1

1

1

1
2

. (11)

According to MML (Method of Maximum Likelihood), the best estimates â  of the un-

knowns a correspond to the maximum of likelihood function (PDF), i.e.,

P f a f a f f1 K 1 Kˆ ,.., ˆ ,..., max( ) ( )( ) =∗ ∗ . (12)

The MML is one of the strategic principles of statistical estimation and the solu-

tion â  is statistically the best in many senses (see Edie et al. [1971]).  The solution is as-
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ymptotically the normal (since PDF is defined asymptotically) and optimum (most accu-

rate – the retrieval errors have the smallest standard deviations).  In addition, the MML

solution keeps many optimum characteristics even in the case of a limited number of

observations.  The optimum properties of MML are closely connected with the Fisher

information determination (see Edie et al. [1971]).

The maximum of the PDF exponential term given by Eq.(11) corresponds to the

minimum of the quadratic form in the exponent.  Therefore, the best solution â , which

can be derived from all given data fk
* , is a vector â  corresponding to the minimum of

the following  form:

Ψ Ψa a f f a W f f a( ) = ( ) = − ( )( ) ( ) − ( )( )[ ]
=

−

=
∑ ∑1

2
1
21

1

1

γ γk k
k

K

k k k

T

k k k
k

K

     * * . (13)

This equation is written via Lagrange  multipliers γk and weight matrices Wk defined as:

W Ck
k

k = 1
2ε

, (14)

where εk
2 denotes the variance of errors ∆k in the data vector fk

*.  Accordingly, La-

grange multipliers have a clear statistical interpretation as the ratios of variances:

γ ε
εk

k
= 1

2

2 . (15)

where ε1
2 denotes the variance of the first (k=1) and likely most important data set.  It

should be noted that there is no need to know the absolute value of the variance ε1
2, be-

cause the retrieval process is aimed at finding the global minimum of Ψ(a) and does not

depend on the value of this minimum.  At the same time, it is known that the value of

Ψ(a) has a χ2 distribution and that the minimum of Ψ(a) statistically relates to ε1
2 as fol-

lows:

2  1
2Ψmin a f a( ) = −( )N N ε , (16)

where Nf is the number of values in all fitted vectors fk
* and Na is the number of re-

trieved parameters.  The above relation is often used for estimation of measurement

error ε1
2.

It is important to emphasize that the MML only formulates the condition of op-

timality and it does not suggest the approach for achieving the minimum of Ψ(a).

Finding the minimum of quadratic form Ψ(a) is a technical question and choosing one
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or another procedure does not improve the solution provided the problem is not ill-

posed and the solution is unique.  According to our strategy of designing the inversion

algorithm, the correct posing of the problem should be done at the stage of forming the

initial data set given by Eq.(9).  For example, in our case of inverting sky (f1
*) and Sun

(f2
*) radiances, these two basic data sets will be supplemented by some a priori data of

corresponding fk
* with k>2.  Therefore, the formulation of initial data sets denoted by

Eq.(9) is a critical question in inversion algorithm development.  In contrast, minimiza-

tion of Ψ(a) is a technical question, which practically does not affect the accuracy of the

solution.  Nevertheless, a good design of a minimizing technique is important for liber-

ating computer power requirements and consequently reducing the time consumption

of the retrieval.

3.2 Minimization procedure

Modern scientific literature (e.g., Press et al. [1992]) contains a variety of stan-

dardized mathematical methods and software for minimizing quadratic forms.  As

noted in the previous Section, the choice of method for finding the minimum of Ψ(a)

(Eq. (13)) is not a critical issue and mainly depends on the complexity of the dependen-

cies fk(a) and the preference of the inversion algorithm developer.  Nevertheless, below

we propose a generalized flexible scheme of minimization that can be easily reduced to

different standard methods.  The scheme shows the clear relationship between different

standard methods.  Therefore, our expectations are that this scheme should be helpful

for designing inversion algorithms for different applications.

For the general case of non linear functions fk(a), the minimization is usually im-

plemented by iteration:

ˆ ˆa a ap 1 p p -  + = ∆ , (17a)

where the correction ∆ap can be approximated by the linear estimator ∆âp  as follows:

∆ ∆a ap
p

p   ≈ t ˆ . (17b)

The multiplier tp≤1 (arbitrarily chosen) is typically used for providing monotonic

convergence of non-linear numerical algorithms (cf. Ortega and Reinboldt [1970]).  As-

suming that ∆âp  is in the close neighborhood of the solution â , a Taylor expansion can

be used:
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f a f a U a a a a
ak k

p

k

p p
pˆ ˆ ˆ ...

,( ) = ( ) + −( ) + −( ) +o
2

(18)

where U
ak p,

 is the Jacobi matrix of the first derivatives in the near vicinity of the vector

ap , i.e., U
f a

a

a

k, ji

k j

i

p

p

 { } =
( ){ }( )∂

∂a
, o â a−( )p 2

 denotes the function that approaches zero as

â a−( )p 2
 when â a−( ) →p 0 .  Now, neglecting all terms of second or higher order in Eq.

(18), we can consider fk(a) as linear functions in Eq. (13).  Accordingly, the correction

∆âp  corresponds to the minimum of Ψ(a) with fk(a)  linearly approximated.  Corre-

spondingly, ∆âp  can be found (accounting for noise optimization) as a solution of the

so-called normal equation system, which for our case is the following (details are given

in Appendices A-B):

γ γ

γ γ

k k,

T

k k,
k

K
p

k k,

T

k k
p

k
k

K

p p

p

 

                                     

U W U W a

U W f a f W a

a a a a

a a a

ˆ ˆ

ˆ

ˆ

ˆ ˆ .

( ) ( ) ( ) + ( )





=

= ( ) ( ) ( ) −( ) + ( ) ( )

−

=

−

− ∗

=

− ∗

∑

∑

1

1

1

1

1

1

∆ ∆

∆ ∆

∆

∆
(19a)

This normal equation system is the solution of the linear LSM (Least Square

Method, e.g. see Tarantola [1987]) which gives the minimum of the quadratic form of

Eq. (13) for linear functions fk(a).  The terms with multiplier γ ∆a  are added on to both

the left and right parts of Eq. (19a) for improving the convergence of the whole mini-

mization procedure given by Eqs. (17)-(19a) (details are given in Appendix B).  These

terms are incorporated statistically in a similar manner for all data associated with Eq.

(9), i.e., the a priori expected correction ( ˆ )∆a ∗ is assumed statistically to be estimated by

( ˆ ) ˆ ( ˆ )∆ ∆ ∆ ∆a a a∗ = ( ) +  with covariance matrix C∆a.  It should be noted that both the a pri-

ori estimate ( ˆ )∆a ∗ in Eq. (19) and the multiplier tp ≤ 1 in Eq.(17b) are mainly invoked to

decrease the length of ∆âp , because linear approximation may strongly overestimate

the ∆âp  correction.  Underestimation of ∆âp  does not affect the convergence, since un-

derestimation may only slow down the arrival to the minimum and not to mislead the

minimization.

The key question of implementing minimization by Eqs. (17)-(19) is the solving

of the linear system Eq. (19a), which in the compact form can be rewritten as follows:
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 Φ ∆ Ψp
p p   ˆ ˆa a= ∇ ( ) , (19b)

where matrix Φp denotes the matrix on the left side of Eq. (19a).  This matrix (at γ ∆a  =

0) relates to the Fisher information matrix, considered in statistical estimation theory

[Edie et al., 1971].  The vector ∇ ( )Ψ ap  (i.e., vector on the right side of Eq. (19a)) repre-

sents the gradient of the quadratic form Ψ(a)  (Eq. (13)).  This vector is essential for

building optimum minimization [Ortega, 1988].

Thus, Eqs. (17)-(19) give a general and flexible form to the minimization of the

quadratic form Ψ(a) (Eq. (13)).  This procedure can be easily transformed, by choosing a

method for solving Eq. (19a), to many other well-established numerical procedures

based on matrix inversion, relaxation, combined iterations methods, etc.  In our opin-

ion, such freedom in incorporating different linear inversion techniques to the general-

ized non-linear scheme (Eqs. (17)-(19)) is very useful for both understanding the rela-

tionships between existing inversion algorithms and in developing our new algorithm.

In our algorithm for inverting atmospheric radiance, we implement two alterna-

tive techniques: matrix inversion (using singular value decomposition) and relaxation

quasi-gradient techniques.  A brief introduction to these methods is given below.

3.2.1. Matrix inversion

The linear system given by Eq. (19) can be solved using matrix inversion opera-

tions.  First of all, the fundamental formula for the linear LSM solution implies matrix

inversion (e.g., Press et al. [1992]).  Correspondingly, a great number of the LSM related

inversion methods use matrix inversion.  For example, Phillips [1962], Twomey [1963],

Tikhonov [1963], Turchin et al. [1970], Rodgers [1976], and others employ matrix inver-

sion in their methods.  All of these methods are well known in optical applications and

differ with the basic LSM formula by using differing a priori constraints (additional dis-

cussion can be found in Section 4 and in the papers of Dubovik et al. [1995,1998a]).

The basic scheme of solving a non-linear system is the traditional Newton-Gauss

procedure (e.g., Ortega and Reinboldt [1975]) that implements the LSM principle in the

non-linear case.  Eqs. (17)-(19) can easily be reduced to the Newton-Gauss procedure.

Namely, if we define tp = 1, γ ∆a  = 0 and γk = 0 (for k ≥ 2) in these formulas, we obtain

the Newton-Gauss method with statistical optimization at each p-step:
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a a U W U U W f fp 1 p
p

T
p p

T p     + − − ∗= − ( ) −( )( )−1 1 1 , (20)

where for simplicity we denote the vectors and matrices as follows: Up denotes Jacobi

matrix U
a1, p ; W denotes weight matrix W1; vector fp denotes vector f(ap).  In this Sec-

tion, we always assume γk=0 (for k ≥ 2) only because the standard numerical formulas

are written for inverting a single data set.

Obviously, Eq. (20) incorporates the basic linear LSM formula.  Indeed, Eq. (20) is

reduced to the linear LSM by assuming linear dependence f(a) = Ua :

a a U W U U W Ua f U W U U W fp 1 p T T p T T          + − − ∗ − − ∗= − ( ) −( )( ) = ( )− −1 1 1 11 1 . (20a)

In practice, Newton-Gauss iterations may not converge and need to be modified.

The most established modification of Eq.(20) is widely known as the Levenberg-

Marquardt method (e.g. Ortega and Reinboldt [1970], Press et al. [1992]).  This method is

also included in the scheme of Eqs. (17)-(19).  Namely, if we assume tp ≤ 1, γ ∆a  > 0 and

( ˆ )∆a ∗ = 0, then Eqs. (17)-(19) can be reduced to the Levenberg-Marquardt method:

a a U W U D U W f fa
p 1 p

p p
T

p p
T pt       + − − − ∗= − +( ) −( )( )1 1 1γ ∆ , (21)

where D = (W∆)-1 and γ∆a = ε ε0
2 2

∆ .  It should be noted that using the generalized inver-

sion procedure of Eqs. (17) and (19) helps to provide an additional simple interpretation

of the Levenberg-Marquardt method.  Indeed, an a priori assumption of ( ˆ )∆a ∗ = 0

means that we constrain the solutions ∆âp  to the smallest value (the closest to ( ˆ )∆a ∗ =

0).  In addition, by assuming ( ˆ )∆a ∗≠ 0 and varying W∆ in Eq. (19a) the convergence

character can be adjusted in the scheme of Eqs. (17)-(19) more flexibly than is possible

with the standard Levenberg-Marquardt formula Eq. (21).

The main difficulty in using the matrix method occurs when the matrix Φp  is of

quasi-degenerate nature and the inverse operator Φp( )−1
 is very unstable.  The practical

way of applying matrix inversion is to use matrix singular value decomposition.

Singular value decomposition is an operation of linear algebra, that allows one

to decompose matrix Φ as Φ = V I A  
iw , where matrices V and A are orthogonal in the

sense that VTV = I and ATA = I.  Matrix Iwi
 is diagonal with the elements on the diago-

nal equal to wi.  Inversion of matrix Φ  trivially follows from this decomposition as

Φ− =1
1A I VT T  

i/ w .  In the case of a near singular matrix Φ,   the inverse matrix of Φ  is

uncertain, because some values wi are equal or close to zero.  By replacing wi = 0 with a
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moderately small non-zero wi, the singular matrix Φ can be replaced by a reasonably

close non-singular matrix Φ’ which can be easily inverted.  The details of this method

can be found in Press et al. [1992].  In many practical situations singular value decompo-

sition is very helpful.  Therefore, we employ this procedure in our algorithm to imple-

ment matrix inversion.

The main concern of applying this method comes from the fact that replacement

of matrix Φ  with matrix Φ’ is formal and has no relation to the physics of an applica-

tion.

3.2.2. Alternatives to Matrix Inversion Methods

Many methods are known in the mathematical literature that can be used to

solve linear systems of equations without using matrix inversion.  Some examples are

the Jacobi and Gauss-Seidel univariant iterations, the steepest descent method, the

method of conjugated gradients, etc.  Some of these methods can yield superior results

over matrix inversion operations.  For example, in our algorithm we employ linear it-

erations, which always give a result even if the linear system is singular and a solution is

not unique.  In contrast with inversions performed by means of singular value decom-

position, iterations do not require any change of matrix Φ.

In the papers by Dubovik et al. [1995, 1998a], the solution of the p-step system

(Eq. (19)) is implemented by means of linear q-iterations and the whole minimization

process is represented via combined iterations (two kinds of iteration).  Namely, ∆âp  is

obtained from Eq. (19b) by means of q-linear iterations:  

∆ ∆ Φ ∆ Ψa a H a ap q p q

p

q

p
p q p ( ) = ( ) − ( ) ( ) − ∇ ( )[ ]+1

. (22a)

Eqs. (17)-(18) and (22) formulate a search for the minimum ap of the quadratic form

Ψ(a) (Eq. (13)) via combined p- and q-iterations.  For each p-iteration, a larger number

of q- iterations can be made.  The matrix Hp  and vector ∆ap q=0( ) can be chosen in vari-

ous ways to assure that the iterations converge.

Such a combined iteration technique is helpful for realizing statistical optimiza-

tion (which usually is associated with matrix methods) by means of relaxation iterations

( Hp  is diagonal matrix) in situations where matrix inversion is not efficient.  In addition,

the consideration of combined iterations helps one to understand relationships between

two categories of inversion methods: matrix inversion methods (Phillips [1962], Twomey
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[1963], Tikhonov [1963 ], Turchin et al. [1970], Rodgers [1976]) and relaxation techniques

(Chahine [1968], Twomey [1975]).  These two kinds of methods are popular in atmos-

pheric optics and remote sensing and they usually are considered as alternative meth-

odologies.

The steepest descent method deserves particular attention among all other relaxa-

tion techniques.  This method has been well described in the mathematical literature

(e.g., Forsythe and Wasow [1960],  Ortega [1988]).  The basic idea of the steepest descent

method (or gradient search method) is to minimize the quadratic form Ψ(a) using it’s

gradient as a direction of the strongest local change of Ψ(a).  The minimization proce-

dure given by Eqs. (17)-(18), (22), can be easily reduced to the steepest descent method

by assuming Hp=tq1, ∆ap q=0( ) = 0 in Eq. (22):

a a a a U W f fp 1 p
p

p p
p p

T pt t     + ∗= − ∇ ( ) = − −( )( )−Ψ 1 . (22b)

Also, only one q- iteration is to be implemented for each p iteration in Eq. (22b), i.e., tp,q

= tp and the combined iterations are reduced to only one kind of p-iteration.

As pointed out in Press et al. [1992], the steepest descent method is generalized

by the Levenberg-Marquardt formula.  Namely, Eq  (19a) can be reduced to (21) by de-

fining matrix D in Eq. (19a) as the unit matrix 1 and prescribing a large value to the pa-

rameter γ∆a .  In Appendix D, we show that the popular Twomey-Chahine relaxation

technique proposed by Twomey [1975] can be considered to be the steepest descent

method.

Equation (22b) can be used to solve both linear and non-linear equations.  Corre-

spondingly, the non-linear steepest descent iterations can be used directly for minimiza-

tion of quadratic form in Eq. (13).  However, such minimization can be very time con-

suming because, for the non-linear case, each iteration requires a recalculation of the

Jacobi matrix Up and the steepest descent method converges to the solution only after a

very large number of iterations.  Therefore, to reduce computation time, we use the

steepest descent method only to solve linear p-step systems (Eq. (19b)) we assume Hp

= tq1, ∆ap q=0( )  = 0 in Eq. (22a).  Then we implement a large number (Nq) of the q-

iterations.

We choose the value of tp,q providing the fastest convergence of the process at

each q-iteration.  Forsythe and Wasow [1960] and Ortega [1988] describe the principles of
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defining such a value.

4. Sun-sky radiance inversion algorithm
In Sections 2 and 3 we described two complementary and necessary tools for re-

alizing an inversion algorithm: a model of radiative transfer and a method of optimum

inversion.  Our intention was to structure and, in a certain sense, to standardize the

process of designing an inversion algorithm.  In Section 3 we outlined the optimization

strategy common to any numerical inversion and proposed the scheme (Eqs. (17)-(19))

uniting a  diversity of minimization methods.  Our expectation is that the proposed in-

version strategy enables one to create a flexible inversion algorithm, which can be eas-

ily upgraded with new developments in forward modeling and/or numerical recipes.

At the same time, the ability to model radiance with available codes and to im-

plement numerical inversions does not reduce the design of Sun-sky radiance inversion

codes to a purely technical procedure.  There are many small and specific questions that

need to be resolved in order to create an inversion procedure that is efficient in practice.

Definitively, the key question in inversion algorithm development is quantifying the a

priori constraints (defining Lagrange multipliers, formulating smoothing matrices, etc.)

In addition, the forward model may also require some adjustments.  For instance, nu-

merical inversion of Eqs. (17)-(19) uses vectors of aerosol parameters, whereas the for-

ward models (Eqs. (1) and (6)-(8)) operate on continuous functions.  Correspondingly,

the vectors with a reasonable number of components should replace functions tradi-

tionally used in modeling.  In this Section, we proceed with the detailed design of a Sun-

sky radiance inversion algorithm, using the principles described in Sections 2 and 3.

4.1 Adaptation of forward model to the inversion

The scheme of numerical inversion given by Eqs. (17)-(19) requires extensive

forward calculations.  Namely, each p-step requires recalculation of fitted characteristics

f(a) and Jacobi matrices U in the case of non-linear dependence f = f(a).  Accordingly,

the adoption of a fast technique forward calculation is very important for making the

inversion algorithm practical and efficient.  Possible ways of accelerating and adjusting

the forward model for inversion purposes are discussed below.



19

4.1.1 Optical thickness and phase function simulations

Eq. (8) summarizes the modeling concept that relates optical properties of the

atmosphere with the size distribution (dN(r)/dr) and complex refractive index ( m̃ (λ)) of

the aerosol particles, which are assumed to be homogeneous spheres.  Both size distri-

bution (dN(r)/dr) and refractive index ( m̃ (λ)) will be the focus of the retrieval in the de-

signed algorithm.  The retrieval of the particle size distribution from the measurements

of light scattered by polydispersions of spheres is a well-developed optical application.

The concept of size distribution retrieval from single scattering measurements is par-

ticularly clear for a case of known refractive index.  The integral equation (Eqs. (6) or

(7)) can be reduced to a linear system, then solved by standard  algebraic methods.  In

our case, the situation is more complicated, because the refractive index is unknown

and the contribution of multiple scattering to sky radiance is significant in some in-

stances.  Nevertheless, in our algorithm, replacing integral Eqs. (6) and (7) with linear

systems is essential for making radiance simulations more rapid.  Also, Eqs. (6) and (7)

are written for the size distribution of columnar aerosol particle number concentration;

however, practical algorithms are often designed to retrieve the size distribution of sur-

face area or volume of aerosol particles since light scattering of small single particle is a

function of particle surface area or volume (cf. Bohren and Huffman [1983]) rather than

number concentration.  Thus, for flexibility of our algorithm, we transform Eqs. (6) and

(7) using different kinds of size distributions: number, radius, area and volume particle

size distributions.  Then, to meet calculation speed requirements, we reduce the integral

equations to a linear systems as follows:

τ λ π
λ

λ
λτ

τ...
...

min

max

...

; ˜ ;
ln ; ;( ) = 





( )
( )

( ) ≈ ( )∫2 K m r

g r
x r d r n k

r

r

n
n n ln     K x . (23)

τ λ λ π
λ

λ
λscat

scat

n
n scat n      ( ) ( ) = 





( )
( )

( ) ≈ ( )∫P
K m r

g r
x r d r n k

r

r

Θ
Θ

Θ;
; ; ˜ ;

ln ln ; ; ;
min

max2
K x ,

Here, the index k (k = 0, 1, 2, 3) denotes the type of distribution as follows:

for n = 0 (number): x r
dR r

d r
r

dN

d r

dN

d r0

0
0ln

ln ln ln
( ) = ( ) = =          (i.e., g0 = 1);

for n = 1   (radius):  x r
dR r

d r
r

dN

d r

dR

d r1 ln
ln ln ln

( ) = ( ) = =         
1

   (i.e., g1 = r); (24)
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for n= 2      (area): x r
dR r

d r
r

dN

d r

dS

d r2
2ln

ln ln ln
( ) = ( ) = =

2
 2   π    (i.e., g2 = 2πr2);

for n = 3  (volume): x r
dR r

d r
r

dN

d r

dV

d r3
34

3
ln

ln ln ln
( ) = ( ) = =

3
   π    (i.e., g3 = 4/3πr3).

The kernel functions of optical thickness Kτ...(…) and differential scattering coefficient

Kscat(…) are approximated in Eqs. (23)-(24) by matrices Kτ...(…) and Kscat(…).  The vector

xn approximates size distribution dRn(r)/dlnr by Nr elements corresponding to the

points {xk}I = dRn(ri)/dlnr chosen with equal step ∆ ln ln lnr r r const= − =+i 1 i .  The calcu-

lations of the matrices Kτ...
...( ) and K sct ...( )  in our algorithm are implemented using

two different ways of interpolating size distribution values between grid points ri.  First,

the size distribution dRn(r)/dlnr between points ln(ri)-(∆lnr)/2 and ln(ri)+(∆lnr)/2 can

simply be assumed to be equal to dRn(ri)/dlnr, i.e., elements of the matrices are com-

puted as:

K...
...

ln ln

ln ln

...
...;

ln( ){ } = 





( )
( )( )−

( )+

∫ji
n        

         

    
i

i2

2

2
π
λ

K r

g r
d r

r r

r r

∆

∆

. (25a)

The trapezoidal approximation is another way of interpolating between points.  In this

case, the size distribution is approximated between a grid points ln(ri+1) and ln(ri)  line-

arly by dRn(r)/dlnr = a lnr + b, where a and b must be chosen to coincide with values

dRn(ri+1)/dlnr and dRn(ri)/dlnr.  The matrix elements for this case are computed accord-

ing to Twomey [1977] as:
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The index j in Eqs. (25a)-(25b) relates to matrix elements with Sun radiance at different

wavelengths and sky radiance at different wavelengths and angles.

The dependence of matrices Kτ...
...( ) and Kscat ...( ) on the real n and imaginary k

part of the refractive index are approximated from look-up tables over all possible n

and k values.  Namely, we compute matrices in Nn and Nk grid points, which cover the

whole range of expected values.  The matrices for the values of n and k between these

grid points are computed using linear interpolation in a logarithmic scale.
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It should be noted that in Eqs. (23)-(25), the size distributions are written in the

logarithmic scale (dRn(r)/dlnr) instead of the linear scale (dN(r)/dr) used in Eqs. (6)-(7).

This is because the kernel functions K......(…) show much smoother variability for equal

relative steps ∆r/r (i.e., for equal logarithmic steps, since dr/r = dlnr) than for equal ab-

solute steps ∆r.  Correspondingly, the logarithmic scale is commonly preferred for

viewing optically important details of the particle size distributions and for making

faster integration over particle size.

According to Eqs. (25a)-(25b), the elements of the kernel matrices K…(…) are in-

tegrals of kernel functions over particle size.  Such integration can be time consuming.

Matrix approximations (Eqs. (23)-(24)) are efficient in practice, because they allow

prompt calculation of optical thickness τ… (extinction and absorption optical thickness)

and differential scattering coefficient τscat(λ)P(Θ;λ), given a n vector of size distribution

xk and refractive index  m̃ λ( ).

All of the above mentioned approximations produce some error even in so-

called “error free” conditions.  According to our estimations (for Nr = 22 in the range:

0.05 µm ≤ r ≤15 µm; Nn = Nk =15 in the ranges : 1.33 ≤ n ≤ 1.6 and 0.0005 ≤ k ≤ 0.5)  these

errors can be considered as relative random errors with variance less than 1% for the

typical aerosol models given by Tanré et al. [1999].  For significantly narrower size dis-

tributions (which are rather unlikely for atmospheric aerosols) this error may increase

to 2-3%.

4.1.2. Simulations of radiative transfer in the atmosphere

As it was mentioned in the Section 2.1, we have employed a scalar discrete ordi-

nates radiative transfer code to simulate diffuse radiance I Θ;λ( ) in the plane parallel

atmosphere approximation.  To make possible internal checks of the algorithm, we

adopted two independent radiative transfer codes, one by Nakajima and Tanaka [1988]

and the other by Stamnes et al. [1988].  However, for practical reason we mainly used

the program by Nakajima and Tanaka [1988], since it employs a truncation approxima-

tion that allows fast and accurate calculation of downwelling radiance in the aureole an-

gular range with relatively small number of Gaussian quadratures points.  At the same

time, it should be noted that we use radiative transfer codes only for modeling fitted

characteristics f(a).  Jacobi matrices Uk,a of Sun/sky radiance derivatives are calculated in
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the single scattering approximation, i.e., for k = 1 ,2.:

Uk,a  ≈ Uk,a (single scattering) (26)

The elements of these matrices can be easily calculated from Eqs. (1a) and (1b) assuming

G(…) equals zero.  Our retrieval experience shows that neglecting multiple scattering in

simulating first derivatives does not particularly affect the retrieval results.

Thus, using Eqs. (23) – (25), the aerosol optical thickness τ…(λ), single scattering

albedo ω0(λ) = τscat(λ)/τext(λ), and phase function (P(Θ,λ)) are generated from the re-

fractive index m̃ (λ) = n(λ) – ik(λ) and the size distribution of aerosol particles

dRn(r)/dlnr in the total atmospheric column.  These aerosol characteristics weighted (as

given by Eqs. (2)-(4)) with molecular scattering and gas absorption compose a set of

atmospheric layer optical characteristics, that are necessary for radiative transfer com-

putations.

Regarding vertical variability of the atmosphere, we consider two approxima-

tions in our algorithm: (i) an atmosphere with vertically homogeneous optical proper-

ties, and (ii) an atmosphere with a known vertical profile of aerosol extinction coeffi-

cient.  For the case of a vertically homogeneous atmosphere, the optical thickness of

molecular scattering and gas absorption are calculated as described by Holben et al.

[1998].  If the vertical profile of the aerosol extinction coefficient is available, the radia-

tive transfer calculations can be performed for a multi-layered atmosphere.  Therewith

the profiles of water vapor and ozone absorption together with climatological profiles

of temperature and pressure (for molecular scattering calculations) are required.  How-

ever, we can hardly count on vertical distribution information of aerosol complex re-

fractive index, single scattering albedo and shape of the particle size distribution.  There-

fore, these optical characteristics are assumed to be constant for the aerosol in the

whole atmospheric column.

We focus our attention on the simplest model of a homogeneous atmosphere.

This is because information on aerosol vertical profiles is not currently available for the

majority of AERONET Sun/sky radiometer locations.  In addition, the effect of aerosol

vertical variability on sky radiance ground measurements is often neglected, because it

is rather modest in comparison with effects caused by aerosol size distribution variabil-

ity.  In addition, to minimize possible retrieval uncertainty due to the assumption of a

homogeneous atmosphere, we concentrate our analysis on inverting sky radiances
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measured in the solar almucantar (Eq. (1b)).   In observations with such a scheme (ze-

nith angle of observations is equal to the solar zenith angle), all atmospheric layers are

always viewed with similar geometry.  Accordingly, at least in single scattering ap-

proximation, sky radiances in the solar almucantar are not sensitive to aerosol vertical

variations.

4.2. Inversion implementation

Implementing the inversion strategy (Section 3) in a practical retrieval requires

defining a number of values and parameters.  First, the error statistics of Sun and sky

radiance measurements should be quantified for incorporating covariance matrices in

the inversion algorithm.  Second, using a priori constraints should be clarified: what

kind of a priori constraints should be used, and what values of the corresponding La-

grange multiplier are appropriate.

4.2.1. Measurement error statistics

The magnitudes of direct and diffuse radiance are very different and the sensors

that measure them are different and use different calibration techniques.  Therefore , the

values of errors in Sun and sky radiance measurements are also rather different.  Cor-

respondingly, in a retrieval algorithm, we consider Sun and sky radiance measurements

as two separate groups:

I I dR r d r n k

dR r d r n k

I
∗( ) = ( ) ( ) ( )( ) + ( )
( ) = ( ) ( ) ( )( ) + ( )







θ λ θ λ λ θ λ

τ λ τ λ λ λτ

; ; ln ; ; ;

ln ; ;*

n

n       

∆

∆
. (27)

In Eq. (27) and everywhere that follows, we consider spectral aerosol extinction optical

thickness τ*(λ) instead of Sun radiance as an initial data set for the retrieval.  This is be-

cause aerosol extinction optical thickness is one of the standard products derived from

AERONET sunphotometer measurements (since the instrument output is calibrated to

retrieve τ*(λ) rather than the absolute radiance) and operating with τ*(λ) helps us to use

both the extensive experience regarding the accuracy of AERONET-derived aerosol op-

tical thickness  and existing knowledge of τ*(λ) variability for atmospheric aerosol.

Thus, the two basic data sets in Eq. (9) correspond to sky radiance measurements (k = 1)

and spectral aerosol optical thickness (k = 2).  However, to define the elements of both
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the fitted vectors fk and the vectors of the unknowns (including size distribution and

complex refractive index), we need to outline the alternatives, viz., operating with loga-

rithms or absolute values.

Logarithmic Transformation (Nonnegativity Assumption)

Retrieval of logarithms of physical characteristics, instead of their absolute values

is an obvious way to avoid retrieval of negative values for fundamentally positive pa-

rameters (such as dRn(ri)/dlnr).  However, the literature devoted to inversion tech-

niques tends to consider this apparently useful tactic as an artificial trick rather than a

scientific technique to optimize solutions.  Such misconception is probably caused by the

fact that the pioneering efforts on inversion optimization by Phillips [1962], Twomey

[1963] and Tikhonov [1963] were devoted to overcoming the difficulties in solving the

Fredholm integral equation of the first kind, i.e., a linear system produced by quadra-

ture.  Problems of that nature involve the retrieval of size distribution by inverting

spectrally dependent optical thickness (Eq. (23)) or by inverting angularily dependent

sky radiance.  Considering τ…(λ) and τscat(λ)P(Θ;λ)  as functions of the logarithm of the

size distribution lnxk(lnr) (i.e., dlnRn(r)/dlnr) instead of xn(lnr) requires replacing initially

linear Eqs. (23)-(24) by nonlinear ones.  On the face of it, such a transformation of linear

problems to non-linear ones is difficult to accept as an optimization.  On the other hand,

in cases when a forward model is a nonlinear function of parameters to be retrieved

(e.g., atmospheric profiling), the retrieval of logarithms is more likely to be the logical

approach.

In our studies we follow the concept proposed in earlier papers (e.g., Dubovik et

al. [1995]).  According to that concept, using logarithms of measured and retrieved

characteristics in the retrievals is often expedient due to both rigorous statistical consid-

erations and practical experience.  It is well known that the curve of the normal distribu-

tion is symmetrical.  In other words, the assumption of a normal PDF necessarily im-

plies the possibility of negative results arising even in the case of physically nonnegative

values  (e.g. intensities, fluxes, etc.).  For nonnegative characteristics (τ*(λ) and I(Θ;λ) in

our studies), the choice of the log-normal distribution for the measurement noise (i.e.,

{f1}j= lnI(Θj1;λj2) and {f2}j = lnτ*(λj2) seems more reasonable due to the following consid-

erations:
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- log-normally distributed values I(Θj1;λj2) and τ*(λj2) are positively-defined;

- there are a number of theoretical and experimental reasons showing that for

positively defined characteristics the log-normal curve (multiplicative errors, see Edie et

al. [1971]) is closer to reality than normal noise (additive errors) (a statistical discussion

can be found in Tarantola [1987]).  As well, the use of the log-normal PDF for noise op-

timization does not require any revision of normal concepts and can be implemented

by simple transformation of the problem to the space of normally-distributed loga-

rithms.

A similar situation is found for retrieving logarithms of positively defined un-

knowns (e.g., xn(lnr) in Eqs. (23)-(24)) instead of their absolute values.  In fact, according

to statistical estimation theory, LSM estimates â  (obtained under the assumption of

normal PDF) are also normally distributed.  It is obvious, even without rigorous statisti-

cal consideration, that for non-negative x i= xn(lnri), this statement can be applied only

approximately, because the normal distribution can not provide zero probability for x i

< 0.  On the other hand, the retrieval of ln xi  instead of x i  illuminates the above contra-

diction, because the normal distribution of ln x̂i  is a reasonable expectation for posi-

tively defined x i .

Moreover, the analysis by Dubovik et al. [1995] has shown that the logarithmic

transformation can be considered as one of the corner stones of the practical efficiency

of Chahine’s iterative procedure.  These techniques are popular in atmospheric research

in spite of the fact that they solve linear systems (Eqs. (23)-(24)) by means of nonlinear

iterations.  In Appendices C-D we show that logarithm based retrievals lead to the

methods of Chahine [1968] and Twomey [1975].  The mathematical treatments given in

Appendices C-D show the close relation of Chahine-like techniques to the steepest de-

scent method (Eq. (22b)).

It should be noted that in many situations, retrieval of absolute values or their

logarithms is practically similar.  This is because narrow log-normal or normal noise dis-

tributions are almost equivalent.  For example, for small variations of non-negative

value of a the following relationship between ∆a and ∆a/a is valid:

∆ ∆
∆

∆ln ln lna a a a
a

a
a= +( ) − ( ) ≈ln  ,  if   <<  1. (28a)

Correspondingly, if only small relative variations of the value of a are allowed, the
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normal distribution of ∆ ln a  is almost equivalent to the normal distribution of absolute

values ∆a .  The covariance of these normal distributions are connected as follows:

C 1 C 1a a a aln     ≈ ( ) ( )− −1 1

, (28b)

where 1a  is diagonal  matrix  with the elements 1a{ } =
ii ia .

To make our inversion algorithm flexible we allow two possibilities in it’s im-

plementation, viz., using (i) absolute values or (ii) logarithms for both measured charac-

teristics (sky radiance and optical thickness) and retrieved parameters (size distribution,

real and imaginary parts of complex refractive index).  However, everywhere below,

we focus our discussion on operating with logarithms.  This is because all considered

characteristics  (both measured and retrieved) are positively defined.  In addition, by

using logarithms it is simple to operate simultaneously with characteristics that have

different units and values varying over a wide range of magnitude.  Thus, the vectors

of measurements are defined as follows:

f1 1 2

* *ln ;{ } = ( )j j jI Θ λ   and  f2 2

* ln{ } = ( )∗
j jτ λ . (29a)

The vector a of unknowns unites the parameters of size distribution and complex re-

fractive index as:

a{ } = ( )i n i1
ln lnx r for i = 1, …, Nr;

a{ } = ( )i i 2
ln n λ for i = Nr+1, …, Nr+Nλ; (29b)

a{ } = ( )i i 2
ln k λ for i = Nr+Nλ+1, …, Nr+2Nλ

where Nr is number of points used for the retrieval of size distribution, and Nλ is the

number of wavelengths.

Weight Matrices of Measurement Data Sets

We consider a set of sky radiance measurements I*(Θ;λ) as a critical piece of in-

formation that is absolutely necessary for the retrieval of size distribution and complex

refractive index.  Therefore, we have assigned k = 1 (i.e., vector f*1) in Eq. (29) and the

Lagrange multipliers of all other data sets (fk, k > 1) according to Eq. (15) should be de-

fined by rating the variance of corresponding errors to the variance of the errors in sky

radiance.  Hence, the central question in the algorithm design is the comparison of er-
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rors in other data sets to sky radiance errors.  Another question relates to the presence

of error correlation for each set.  In other words, should weight matrices Wk be as-

sumed diagonal (no correlation) or non-diagonal (there is correlation).  At present, we

are not aware of any clear correlation between random errors in measurements of ra-

diance at different wavelengths or angles.  Therefore, in our current study, we consider

the simplest case of diagonal weight matrices, i.e., Wk j i{ } =≠ 0.  The diagonal elements

of weight matrices reflect the spectral and angular changes of instrumental signal/noise

ratio of atmospheric radiance.

The accuracy of sky channel radiance measurements is maintained by calibration

of the sky radiometer with an integrating sphere radiance source at the level of 5% or

better for all wavelengths [Holben et al., 1998].  Therefore, we assume the same 5% ac-

curacy of sky radiance measurements for all wavelengths and angles of observation,

independent of the magnitude of the sky radiance signal (i.e., relative accuracy is a con-

stant).  According to Eq. (28a), relative errors are approximately equal to logarithmic

errors, i.e., for logarithms of measurements (Eq. (29)): i.e., ε λ1 0 05~ .
ln ;

∆ ΘI ( ) ≈  and the

weight matrix is equal to unit matrix W1 = 1 (where 1 has diagonal elements equal to 1).

The calibration procedure of the Sun channels is expected to reduce the absolute

uncertainty in τ(λ) to the level of about ±0.01 for λ ≥ 440 nm and  ±0.02  for λ < 440  nm

wavelength dependence [Holben et al., 1998, Eck et al., 1999].  The studies by Schmid et

al. [1999] have shown good agreement to this expected accuracy for AERONET instru-

ment in field experiment conditions.  Thus, we estimate τ(λ) with an absolute confidence

interval of ±0.01 for the wavelengths used in the retrieval which are all ≥ 440.  For the

simplicity of further consideration we neglect any minor wavelength dependence.  Cor-

respondingly, relative error changes with τ(λ) and the value of the logarithmic error

∆lnτ(λ)  depends on the magnitude of optical thickness.  Indeed, applying Eq. (28a), we

can use 0.01 = ∆τ(λ) ≈ τ(λ) ∆lnτ(λ)  , i.e., ∆lnτ(λ) ≈ 0.01/τ(λ). Thus, to define the weight

matrix W2 we normalize the covariance matrix of  ∆lnτ(λ)  by the variance of optical

thickness logarithmic error at 440 nm ( ε ττ2
2

440
2 2

0 01 440~ .ln∆ ( ) ≈ ( )( )   ) and obtain the

following diagonal elements (Eq.(14)):

{W2}jj = (τ(440)/τ(λj) )
2. (30)



28

Values of the Lagrange Multiplier

In the literature devoted to inversion techniques (e.g., Twomey [1977], Tikhonov

and Arsenin [1977], Tarantola [1987], etc.), the Lagrange multiplier is defined as a

nonnegative multiplier that serves to weight the contribution of a priori (smoothness)

constraints, relative to the contribution of the measurements.  The value of this contri-

bution is usually evaluated by correspondent sensitivity studies [King, 1982].

In our investigations we pursued a statistical optimization approach that defined

the optimum inversion of multi-source data as a minimization of the multi-term quad-

ratic form given by Eq. (13).  This approach does not make any distinction between

measured and a priori characteristics except for the different accuracy of each data set.

The contribution of each data set is weighted by corresponding parameter γk related to

the contribution of the basic set of measurements (i.e., for basic data set: γ1 = 1).  Hence,

we assign parameter γk for every set of a priori or measurement data and, call this γk a

Lagrange multiplier following the traditional terminology.  The value of each Lagrange

multiplier is clearly defined by Eq. (15) as a ratio of error variances.  However, the prac-

tical choice of Lagrange multipliers is a challenging task, because accurate values of er-

ror variances are not typically available in practice.  Nevertheless, Eq. (15) is very help-

ful in evaluating the expected range of γk values.

In our implementation, the relative impacts of sky radiance and optical thickness

measurements on the retrieval result are assumed to be comparable.  Therefore, in de-

signing the current algorithm, we focus especially on the control of fitting errors of

both sky radiance and spectral optical thickness measurements.  Namely, we anticipate

that a successful retrieval should simultaneously satisfy the following criteria for all k:

Ψk ≤ Nk σk
2, (31)

where Nk is the number of values in the fitted vector fk
* and σk is the measurement ac-

curacy.  Correspondingly, the values of Ψk, and the contribution of each term Ψk in the

total value of Ψ, directly depend on Nk.  However, this data dependence on the number

of measurements is not appropriate in practice, because a simple increase of Nk may

lead to an increasing number of redundant measurements without an increase of in-

formation content.  Therefore, our strategy of combining data fk
* is to consider sky ra-

diance and optical thickness data sets as two critical pieces of information and the im-
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portance of each peace of information is independent of the numbers of measurement

Nk.  Hence, based on our criteria given by Eq. (31), we define the Lagrange multipliers

γk (for the measurements, i.e., k=1,2) as the following function of the numbers of meas-

urements:

γ σ
σ

γk
1 1

2

k k
2

1

k
k

 
 

 
 

= = ′N

N

N

N
. (32)

Obviously, this definition of γk forces equal values of γk Ψk and makes reasonable the

consideration of parameters ′γ k  (instead of γk), because of their independence of Nk in

each data set.  It should be emphasized that defining Eq. (32) is practically equivalent to

the assumption that the expected accuracy σk of a single measurement is related to the

uncertainty εk of the data set, which includes Nk measurements of radiance, as follows:

εk
2 = Nk σk

2. (33)

This relationship assumes that εk increases with the number of measurements as Nk .

Such a result can be caused by the fact that the number of various random error

sources may increase (as Nk ) with the increase of measurement number.  For exam-

ple, the increase of angular and spectral resolution of radiance measurements requires a

longer measurement time resulting in an increase of errors due to natural temporal

variability of sky radiance.

Thus, the Lagrange multipliers ′γ 1 and ′γ 2  can be defined as follows.  Obviously,

′γ 1 is always equal to unity and is included in Eq. (13) for identity in formulation of all

terms.  The multiplier ′γ 2  in our algorithm is the ratio of variances of sky radiance and

optical thickness measurement errors and according to our assumptions about these

errors (σ1 ≈ ∆lnI(Θ;λ) ≈ 0.05 and σ2 ≈ ∆lnτ(440) ≈ 0.01/τ(440)), the value of ′γ 2  is the fol-

lowing from Eq. (32):

′γ 2  ≈ 25 (τ(440))2. (34)

It should be noted that the values used for σ1 and σ2 are rather approximate.  Also, the

correctness of the assumption in Eq. (33) needs validation (e.g., it may not work for

rather small Nk).  Therefore, we consider Eq. (34), as an estimation of ′γ 2 that needs fur-

ther verification.
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4.2.2 A priori constraints

The retrieval of the aerosol size distribution from measurements of scattered

light belongs to the class of so-called ill-posed inverse problems.  Ill-posed problems

tend to have an unstable non-unique solution and using a priori constraints is essential

for solving such problems successfully (e.g., Tikhonov and Arsenin [1977]).  Applying

smoothness constraints on the variability of the size distribution (or other retrieved

characteristics) is well established and a commonly accepted technique for eliminating

unrealistic oscillations in the retrievals.  Twomey [1977] gives the basic principles of solu-

tion smoothing for optical and remote sensing applications.  In our algorithm we re-

trieve several functions (particle size distribution and complex refractive index) requir-

ing different a priori constraints.  The purpose of the current subsection is to introduce

the specific limitations on retrieved dRn/dlnr, n(λ) and k(λ) by defining vectors fk>2 in Eq.

(9).

We apply two basic methods of constraining the solution.  The first method con-

strains the solution by a sample solution a*.  This constraint has been proposed by

Twomey [1963] and expanded in the scope of the statistical approach by Strand and

Westwater[1968].  Rodgers [1976, 1990] accomplished further development and applica-

tion of this method in atmospheric remote sensing applications.  The second method

constrains only the differences between elements of vector â  and does not restrict their

values.  In another words, this method applies pure smoothness constraints to eliminate

only strong oscillations in the retrieved characteristics.  Twomey [1977] and Tikhonov

and Arsenin [1977] give the basic techniques of implementing such smoothing.  This

type of smoothing is commonly used in aerosol optical properties retrievals (e.g., King

et al. [1978], Shaw [1979], King [1982], Nakajima et al. [1983, 1996], Spinhirne and King

[1995], Dubovik et al. [1995]).

Constraining the Solution by a priori Estimates

The most straightforward method of eliminating unrealistic values in the solu-

tion â  is to use an a priori estimate of the solution a* (in another words, virtual meas-

urements of retrieved characteristics).  For example, the climatological data of dRn/dlnr,

n(λ) and k(λ) (or of dlnRn/dlnr, ln(n(λ)) and ln(k(λ)) if the log-normal statistic is applied),

can be considered as a priori estimates.  In this case, the k-th equation system can simply
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be defined as:

a a
a

∗ = + ∗∆ , (35)

where ∆
a∗  denotes the error in a priori estimates (climatological data) a*.  Defining the

covariance matrix Ca of errors ∆
a∗  in an a priori estimate a* should not be a problem (at

least for climatological data).  Since Eq. (35) is very simple, incorporating Eq. (35) into

Eqs. (17)-(19) is rather transparent and we will not discuss it (for details see Dubovik et

al. [1995]).

In our algorithm we include the option of employing an a priori estimate only for

restricting the values of the real part of the refractive index.  This is done for two rea-

sons.  First, the range of n(λ) for aerosol is limited (e.g., Tanré et al. [1999] give values of

n(λ) within a range of 1.40-1.55 for 470-1240 nm).  Second, the information content of

atmospheric radiance measured by AERONET is not sufficient for accurate retrieval of

n(λ) in some situations (for  discussion see Dubovik et al. [1999]).  Nevertheless, we will

not employ an a priori estimate of n(λ) because we focus our efforts on the situation

where n(λ) can be retrieved without forcing retrievals by an a priori range of values of

n(λ).  Examples of using a priori estimates of n(λ) can be found in the paper by  Roma-

nov et al. [1999], where a similar approach has been applied.  It should be noted that in

contrast with a simple fixing of the refractive index, the use of a priori estimates of re-

fractive index through Eq. (35) gives some freedom (depending on corresponding γk) to

obtain a refractive index different from it’s a priori value.

Smoothness Constraints of the Solution

For smoothing the solution, the norm of the g-th logarithmic derivatives of the

retrieved characteristics y(z) are restricted:

a
d y z

d z
dz

y z

z
z zm

m

m

m

m
j

n
-2m+1 T

m

T

m= ( )





≈ ( )
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= ( ) ( ) ( )∫ ∑
=

2 2

1

∆
∆

∆ ∆ y S S y , (36a)

where ∆m
iy z( ) denote m-th differences (m = 1,2,3,...), which are defined as:

∆1y(zi) = y(zi) – y(zi+1) = yi – yi+1,

∆2y(zi) = ∆1y(zi) – ∆1y(zi+1) = yi – 2yi+1 + yi+2, (36b)

∆3y(zi) = ∆2y(zi) – ∆2y(zi+1) = yi – 3yi+1 + 3yi+2 – yi+3.
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Matrix Sm contains the coefficients for calculating vector dm (with elements {dm}i =

∆my(zi)) of m-th differences of y(x):

dm = Sm y, (37)

where y(z) is replaced by correspondent vectors x (with elements zi = z1 + (i-1)∆x, ∆x =

const) and y (with elements yi = y(zi) ).  For example, the matrix of second differences, is

given by:

S
2

1 - 2   1    0   ...

0   1 - 2    1   0  ...

0   0    1 - 2   1  0  ...

...........................................

......................... 0   1 - 2  1

=





















. (38)

This matrix is most commonly used for aerosol size distribution retrieval (c.f., Twomey

[1977], King et al. [1978], King [1982], Nakajima et al. [1996].)  In our studies, we are fol-

lowing the approach of Dubovik et al. [1995] and define smoothing constraints statisti-

cally in the form of the corresponding vector equation given by Eq. (9).  In particular,

we know that the m-th derivatives of function y(x) are limited and approach zero as the

degree m increases: dm = 0 – ∆dm (∆dm defines deviations from zero).  Correspondingly,

we can write:

0 = Sm y + ∆dm. (39)

Using this equation in the case when 0 = ∆dm defines y(x) (constant, straight line, parab-

ola, etc.) as follows:

dy z

dz
Y z

d y z

dz
Y z z

d y z

dz
Y z z z

( ) = ⇒ ( )

( ) = ⇒ ( )

( ) = ⇒ ( )

0

0

0

1

2

2 2

3

3 3

   = C ;  

  = B +  C ;  

  =  A +  B  +  C ;2

, (40)

where A, B, C are arbitrary constants.

Eqs. (39)-(40) are helpful for qualitative and, together with Eq. (36), quantitative

evaluations of the effects of introducing smoothness constraints into retrieval algo-

rithms.  For example, we can always assume that we have a set of virtual measure-

ments of m-th degree derivatives of an unknown characteristic y(z) (e.g., particle size

distribution, etc.).  The variance of the errors in such a data set can be easily estimated
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as follows:  

ε
dm

2

i m i

2

y m
m

m
max m= − ( )( ) = ( ) ≤ ( )− −Y a z a zz ∆ ∆2 1 2 1, (41)

where Ym(z) is given by Eq.(40).  The value am
max  is the maximum possible norm of the

m-th order derivatives of y(x) and can be calculated according to Eq. (36) for most y(z).

For example, below we will estimate am
max  for the aerosol size distribution based on cli-

matological data.

The difference between our algorithm and other known aerosol retrieval algo-

rithms (King et al. [1978], Nakajima et al. [1983], etc.) is that we are restricting several

functions simultaneously (y(z) = lnx(lnr); y(z) = ln n λ( ) and y(z) = ln k λ( )) and for each

function different values of am (k= 1, 2, 3) and εk  are to be defined.  Indeed, admissible

variations of the size distribution lnx(lnr) = dlnRn/dlnr are expected to be much

stronger than for spectral variations of the real n λ( ) and imaginary k λ( ) parts of the

refractive index.  Therefore, we should define smoothness vectors fk (and correspon-

dent Lagrange multipliers) in Eq. (9) separately for particle size distribution, and real

and imaginary parts of the index of refraction; i.e., each smoothness vector fk should

depend only on the part of the retrieved vector a corresponding to x(lnr), n λ( ), or k λ( ).

Thus, we have three vectors fk (k = 3,4,5) defining a priori constrains:

f f a U a

f f a U a
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, (42a)

where vectors ax, an  and ak denote parts of the complete vector a (i.e., aT = ( ax, an, ak)
T),

matrices Sx, Sn , and Sk denote matrices of the corresponding differences, vectors  0* and

matrices 0  denote, correspondingly, vectors and matrices with zero elements.  The cor-

responding weight matrices are defined as unit matrices:

Wk = 1 (k = 3,4,5). (42b)

Finally to complete the description of smoothness constraints in our algorithm

(i.e., to define Sx, Sn, Sk , γ3, γ4 and γ5), we need to evaluate the required orders of the de-

rivatives and norms a… for the retrieved functions (y(z) = lnx(lnr); y(z) = ln n λ( ) and y(z)

= ln k λ( )).
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Smoothness of the Particle Size Distribution

The particle size distribution of tropospheric aerosols may contain several dis-

tinct modes and each mode is most commonly modeled by a log-normal function

[Whitby, 1978, Remer et al., 1997, 1998, Remer and Kaufman, 1998].  The norms a… of Eq.

(36) are thus evaluated using:

y z x r
d R r

d r

r r
( ) = ( ) = ( ) = −

−
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π σ σ1

2

1
2

, (43)

where y(z) = lnxk’(lnr).  To evaluate am
max  we should estimate ak for the most variable

function lnx n(lnr).  For the particle size distribution given by Eq. (43), the norm of the

derivatives would increase with increasing number J of the components and with de-

creasing standard deviation σj for each component.  Accordingly, the size distribution

with the largest number of narrow components has the greatest value of am
max (the

smaller σj the narrower the function).  Physical processes in the atmosphere most fre-

quently result in a bi-modal structure of the aerosol size distribution [Remer and Kauf-

man, 1998].  At the same time, the appearance of a third mode is also realistic.  For ex-

ample, a volcanic eruption may produce optically thick stratospheric aerosol, which

adds a stable third additional mode to the commonly appearing accumulation mode

(small particles; r < 0.6 µm) and coarse mode (large particles; r > 0.6 µm) composing

tropospheric aerosol [Kaufman and Holben, 1996].  The standard deviation σj of the

aerosol size distribution varies depending on the type of aerosol and the atmospheric

conditions.  Tanré et al. [1999] give σ = 0.4 for the narrowest aerosol modes.  In practice

the size distributions can most likely be even narrower than size distributions corre-

sponding to σ = 0.4.  However, we can not expect resolution smaller than the interval

∆lnr=lnri+1-lnri chosen for defining the linear systems in Eqs. (23)-(26), i.e., particle size

distribution should not be narrower than ∆lnr (σ = ∆lnr).

Thus, to estimate the maximum norm am
max  we calculate the norm of the first,

second and third derivatives for a tri-modal log normal size distribution for two cases

σ = 0.4 and σ = ∆lnr.  The results of these calculations are summarized in Table 1.  Cor-

responding to these calculations, the values of the Lagrange multiplier (γ3), obtained by

means of Eqs. (41) and(15), are found to be in the range 3.0×10-6 - 3.0×10-3.  It should be

noted that Table 1 contains the results of calculations for the size distribution of particle
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volume dV/dlnr.  However the values of am for the logarithmic differences of the sec-

ond and greater order are the same for all distributions dRn /dlnr.  This is because the

differences ∆ ln(dRn /dlnr)  of the second and greater order are independent of n.  Thus,

the logarithms of size and the same smoothness restrictions can be used for the distri-

butions of particle number, radius, area and volume if these restrictions are applied to

the logarithms lnx (lnr).

Smoothness of Spectral Dependence of Complex Refractive Index

To define the parameters γ4 = (εn/ε1)
2 and γ5= (εk/ε1)

2, we need to evaluate de-

rivative norms of spectral dependencies y(z) = ln n λ( ) and y(z) = ln k λ( ).  Spectral vari-

ability is usually not expected for both real and imaginary parts of the aerosol particle

refractive index.  For example, the widely cited paper by Shettle and Fenn [1979] shows

practically wavelength independent complex refractive indices in the spectral interval of

interest (440 – 1020 nm) for the materials typically composing atmospheric aerosols.

Similarly, aerosol models by Tanré et al. [1999] assume single constant values of com-

plex refractive index for the spectral interval considered.  However, in the scientific lit-

erature there are multiple indications of possible spectral selectivity of the refractive in-

dex for aerosol particles [e.g., Ackerman and Toon, 1981, Patterson and McMahon, 1984,

Horvath,1993, Dubovik et al.,1998b, Yamasoe et al.,1998].  Therefore, we constrain the

spectral variability of the retrieved complex refractive index to some practically reason-

able ranges rather than to any particular model of the atmospheric aerosol.

For analyzing derivative values we approximate spectral dependencies n λ( ) and

k λ( ) by exponential functions in a manner similar to Dubovik et al. [1998b]:

n kn kλ λ λ λα α( ) ( ) ( ) ( )− −~ ~   and    . (44)

Obviously, the logarithmic derivatives  
m

m

d n

d

ln ( )
ln

λ
λ

 and  
m

m

d k

d

ln ( )
ln

λ
λ

 are equal to zero for

m > 1.  Therefore, we will be using first derivatives for constraining the spectral vari-

ability of the complex refractive index.  The norms of the first derivatives a1
max  directly

relate to exponents:  a n n1,
max max

max minln ln= −( )α λ λ  and  a k1,
max =  α λ λk

max
max minln ln−( ) .  We es-

timate the maximum spectral dependence of the real part of the refractive index

as   0.2a n1,
max = , which corresponds to change from n(440) = 1.6 to n(1020) = 1.33.  The



36

value of   1.5a k1,
max = , given by Dubovik et al. [1998b] for biomass burning aerosol is ac-

cepted in our studies as an indicator of the strongest spectral variability of imaginary

part of the complex refractive index (k(440) = 0.04 to k(1020) = 0.011).  The values of cor-

responding Lagrange multipliers (γ4 and γ5) are given in Table 3.

It should be noted that the traditional smoothness matrices with elements given

by integer numbers (e.g., the matrix given by Eq. (38)) can not be applied for con-

straining the spectral dependence of the refractive index.  This is because the spectral

interval ∆λi is not constant in our application.  For example, sky radiances are measured

by AERONET Sun photometers at 4 wavelengths: 440, 670, 870, 1020, i.e., ∆λi = λi+1 - λi ≠

const.  Correspondingly, we use smoothness matrices Sn and Sk  in Eq. (42) which are

constructed for numerical derivatives ∆y(z)/ ∆z rather than for differences ∆y(z), i.e.,

the matrices Sn  and Sk   account for the ∆λi in differences with matrices given by Eq. (38).

The restriction of second derivatives also can be applied for the retrieval of the

spectral dependence of refractive index.  Such a restriction would constraint the refrac-

tive index spectral variability by exponential functions Eq. (44).  However, it would not

restrict the values αn and αk .  This might be insufficient in practice, because limited in-

formation content of the Sun/sky radiance [Dubovik et al., 1999] may result in retrieval

of unrealistically strong spectral selectivity of the refractive index.

Convergence improvements

The procedure given by Eqs. (17)-(19) should provide monotonic and fast con-

vergence of the iterations to the minimum of the quadratic form Ψ(a) (Eq. (13)).  Equa-

tion (19a) contains terms (on both the right and left sides of the equations) that limit the

length of the correction vector ∆ap and help to provide monotonic convergence of

minimization in a similar manner to the Levenberg-Marquardt method.

As was mentioned in Section 3.1.1., we implement this correction by assuming a

priori constraints on the step correction ∆ap.  We constrain the parts ∆a x
p , ∆an

p  and ∆ak
p

of the vector ∆ap differently.  Namely, we assume 0* = ∆ap + ∆∆a with the weight matrix:

W

1 0 0

0 1 0

0 0 1
a∆ =















g

g
n

k

, (45a)

where 1 is a unit matrix, gn =( ε∆n/ε∆x)
2 and gk = (ε∆k/ε∆x)

2.  The variances ε∆,x
2 , ε∆,n

2  and
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ε∆,k
2  can be estimated on the ranges of the variability of particle size distribution, real

and imaginary parts of complex refractive index as follows:

ε∆,x = 0.5 (lnxmax – lnxmin) ≈ 2.5,

ε∆,n = 0.5 (lnnmax – lnnmin) ≈ 0.05, (45b)

ε∆,k = 0.5 (lnkmax – lnkmin) ≈ 1.

In this equation we considered the interval [lnamax; lnamin] as 68% confidence interval

[lna + ε ; ln a - ε].  We used the following considerations for choosing the maximum and

minimum values.  The realistic maximum values of x = dV/dlnr (the size distribution of

the particle volume in the total atmospheric column) can be easily expected to be in the

range from 0.005 (µm)3/(µm)2 to 0.5 (µm)3/(µm)2 [Dubovik et al., 1999].  For the real

and imaginary parts of the aerosol complex refractive index we assume variability

ranges from 1.60 to 1.40 and 0.05 – 0.005 respectively (for the spectral range: 440 – 1020

nm).  Also, the values in Eq. (45) are rounded off to number multiples of 5.  It should be

noted that these ranges are only for restricting ∆ap, i.e., the correspondent values of ∆ap

are not expected to be larger than the length of the above mentioned intervals.  Obvi-

ously, after several iterations even greater changes can be achieved.

The definition of the Lagrange multipliers γ∆a is similar to the one given by Eq.

(15) with the difference that instead of ε1  we use its estimate ε̂ ap( ) obtained from the

residual (Eq. (15)), i.e.,

γ
ε

ε∆
∆

a a
ap

p

( ) =
( )ˆ

,

2

2
x

. (46)

where ε̂ 2 ap( ) = 2 Ψ ap
f a( ) −( )N N .  According to this equation the value of the Lagrange

multiplier γ ∆a  decreases with decreasing quadratic form Ψ(ap).  We have chosen this

definition because the linear approximation in the small vicinity of the solution a’ pro-

duces rather accurate  ∆ap and any restriction on the solution correction ∆ap is not

needed.  Moreover, it may also slow down the convergence of the iterative process.

Thus, the a priori constraints on the correction ∆ap help to attain a monotonic and

fast convergence.  The restrictions are in effect when ap is far from the solution and they

weaken when approaching the solution a’.
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5.  Summary and illustrations
In Sections 2 and 3 we described the concept of forward modeling and inversion

strategy.  Section 4 described the details of organizing the inversion algorithm for de-

riving aerosol optical properties from atmospheric radiance measurements by

AERONET Sun-sky scanning radiometers.  Two aspects were discussed: the forward

model optimization from an inversion viewpoint and choosing the values of parame-

ters required for setting up the inversion scheme.  The purpose of Section 5 is to sum-

marize and illustrate the result of our algorithm development.

The strategy of our development was to make a flexible algorithm that can be

easily adapted to different practical needs and that also can easily be upgraded by new

developments in radiative transfer modeling and numerical recipes.  The possibility of

upgrading an algorithm is assumed in many modern codes and is generally more inter-

esting for the developer than for the user.  Therefore, we will not discuss this aspect

here.  We will emphasize the flexibility in choosing a number of alternatives for imple-

menting the inversion so that the inversion scheme can be easily used with other radia-

tive transfer schemes, or even in other applications.  Correspondingly, we have tried to

make the forward modeling and inversion parts of the algorithm as independent of

each other as possible and we have put significant effort into making the inversion part

of our algorithm rather transparent and changeable.  Therefore, below we will identify

the possible alternatives in implementing the inversion and illustrate the resulting dif-

ferences.

5.1.  Proposed algorithm and alternative implementations

Here we will discuss the following main questions: (i) ways of representing

measured radiances in the retrieval algorithm; (ii) ways of representing optical charac-

teristics of the aerosol in the retrieval algorithm; and (iii) choosing a matrix or iterative

inversion for implementing the minimization.

Radiances in the retrieval algorithm

As was described in Section 4, we optimize the algorithm by accounting for

measurement error while fitting aerosol optical thickness and sky radiances.  The cho-

sen settings are summarized in Table 2.  The key point in these settings is the noise as-

sumption.  We also recommend utilization of log-normal statistics (i.e., we fit the loga-
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rithms of optical thickness and sky radiance).  As for alternative noise statistics, the

normal distribution of sky radiance and optical thickness  with weight matrices given in

Table 2 is the most reasonable alternative to the assumption of log-normal statistics (i.e.,

we fit the absolute values of optical thickness and sky radiance).  The values of the

weight matrices, covariances and Lagrange multipliers given in Table 2 for normal dis-

tributions were not discussed in the text, however they can easily be derived for the ex-

pected errors based on the same concepts.

Optical characteristics of aerosol in the retrieval algorithm

The questions of defining the retrieved aerosol characteristics were described in

Section 4, and Table 3 summarizes the chosen settings.  This Table shows two main pos-

sibilities we considered: to retrieve logarithms (recommended) or absolute (alternative)

values of aerosol characteristics  (x(lnri), n(λi) and k(λi)).  For each case, Table 3 describes

the a priori constraints for all of the retrieved aerosol characteristics.  For the particle

size distribution and the wavelength dependence of the imaginary part of refractive in-

dex we indicate possibilities of constraining the differences (derivatives) of the first, sec-

ond or third orders.  According to our analysis, these constraints are approximately

equivalent.  It is our expectation that the differences of the third order (for particle size

distribution) can be more efficient in practice, because it allows for the highest variabil-

ity of x(lnri).  However, this statement should be verified in practice and by numerical

tests.

Matrix and iterative inversion

As discussed in Section 3, statistical optimization requires the minimization of the

quadratic form and various mathematical techniques can be employed for implement-

ing this minimization (see Section 3.2).  In our algorithm we include two main alterna-

tives: using matrix inversion by means of the SVD technique (Section 3.2.1) or by using

combined iterations as described in Section 3.2.2.  Also, we include the possibility of al-

gorithm convergence improvement in a manner similar to the Levenberg-Marquardt

method.  Namely, we include a priori constraints on the solution correction ∆ap at each

p-step as described in Section 4.
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5.2. Illustrations

Numerical tests

The algorithm is focused on the simultaneous retrieval of particle size distribu-

tion and wavelength dependent refractive index (real and imaginary parts).  The princi-

pal difference with known approaches (e.g., Wendish and von Hoyningen-Huene [1994];

Yamasoe et al., [1998]) is that we retrieve all aerosol characteristics (x(lnri), n(λi) and

k(λi)) at once by simultaneous fitting measurements of optical thickness and the angular

distribution of sky radiances in the entire available spectral range.  To succeed in such a

global fitting we had to employ an elaborated inversion scheme, which has been de-

scribed and which allows us a significant degree of flexibility in realizing the inversion.

The purpose of this Section is accordingly to illustrate how well the inversion scheme

works and what kind of results can be expected by using the different inversion op-

tions.

We have conducted a large number of numerical tests with the purpose of veri-

fying the efficiency of the algorithm and checking the results regarding the settings of

the inversion algorithm.  Each illustration displayed below illustrates the phenomenon

that was distinctly observed in a large number of numerical tests.

First, we have tested the efficiency of algorithm convergence and the sufficiency

of information content for successful retrieval of all aerosol characteristics (x(lnri), n(λi)

and k(λi)).  In this test we simulated aerosol optical thicknesses and the angular distribu-

tion of sky radiances at several wavelengths for an assumed particle size distribution

and complex refractive index.  Then we inverted the simulated optical thickness and

sky-radiance and compared the retrieved particle size distribution and complex refrac-

tive index with the assumed values.  Given the importance of aerosol absorption to is-

sues of radiative forcing (see Kaufman et al. [1997]), we thought it is of interest to evalu-

ate the agreement between values of single scattering albedo (ω λ τ λ τ λ0
aer

scat
aer

ext
aer( ) = ( ) ( ))

obtained for assumed and retrieved aerosol characteristics x(lnri), n(λi) and k(λi).  All

tests were conducted for the measurement scheme (wavelengths, zenith and azimuth

angles of observation, etc.) established for AERONET radiometers (for details see Hol-

ben et al. [1998]).  The tests have shown that both real and imaginary parts of the com-

plex refractive index can be successfully retrieved together with particle size distribu-

tion, if no noise is introduced in the simulated radiance.  In a majority of cases the errors
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did not exceed 20% for k(λi), 0.02 for n(λi), 0.015 for ω λ0
aer ( ), and 10% for dV/dlnr for

particles in the size range from 0.1 to 7 µm (the errors increase in the tails of the re-

trieved particle size distribution).  The results remain good even in the presence of ran-

dom noise.  For example, Figs. 1 and 2 illustrate the results of our test for retrieving

biomass burning aerosol optical properties modeled with wavelength dependent real

and imaginary parts of the refractive index.  A bi-modal log-normal size distribution

was assumed for this illustration according to the biomass burning aerosol model given

by Remer et al. [1998].  The wavelength dependence of n(λi) was assumed according to

the values of the real part of the refractive index retrieved by Yamasoe et al. [1998] for

smoke in Brazil.  The wavelength dependence of the imaginary part of the refractive

index was assumed accordingly to Dubovik et al. [1998b] for k(λi) of Brazilian  smoke

with pronounced wavelength dependence of absorption (“artificial soot”).  The algo-

rithm computed the retrievals shown in Figures 1 and 2 with the settings recommended

in Tables 2 and 3.

According to performance tests, the use of the logarithmic transformation is a

critical aspect of our algorithm (for both fitting the logarithm of radiance and retrieving

logarithms of x(lnri), n(λi) and k(λi)).  By using absolute values (i.e., settings suggested in

Tables 2 and 3 as alternatives) we could not obtain a stable convergence.  In this case,

the success of the retrieval required a special choice of the initial guess for each different

combination of the retrieved parameters.  In contrast, using logarithms we achieved

good retrievals starting with the same initial guess (dV(r)/dlnr = 0.0001, n(λi) = 1.50 and

k(λi) = 0.005) in all cases.

Figures 3-5 illustrate the results of the retrievals, where the refractive index is

known and fixed, for three different cases: large particles dominate (Figure 3); small

particles dominate (Figure 4) and the presence of small and large particles is comparable

with a third minor mode present in the middle range of particle size (Figure 5).  In such

situations, using both recommended and alternative settings gave good retrievals for

the case with no noise added.  However, if some random noise was added to the simu-

lated radiances, the retrieval using logarithms was superior for both very small and

large particle size ranges.  In this respect, it is important to note that the widely used in-

version code of Nakajima et al. [1983, 1996] does not use the logarithmic transformation

(see analysis by Dubovik et al. [1998b]).  This is probably one of the reasons for the in-
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herit difficulties of the Nakajima et al. method in reproducing size distributions in the

range of very small and large particles (see the discussion in the papers by Remer et al.

[1997, 1998] ).

It is important to notice that Figures 3-5 also illustrate the fact that in the pres-

ence of noise we were obtaining, in general, more stable retrievals when both size dis-

tribution and complex refractive index were retrieved than by retrieving only size dis-

tribution (with refractive index fixed to the correct value).  This result can be explained

by the fact that when refractive index is fixed only the size distribution can be changed

during the retrieval.  Thus the fitting of noisy data forces the size distribution to com-

pensate for all of the errors in radiance.  Alternatively, if both size distribution and re-

fractive index are retrieved simultaneously then errors in measured radiances will only

be partially tied to errors in the size distribution, because some compensation or error

redistribution will occur due to retrieval errors in refractive index.  These errors in the

refractive index retrieved under noisy conditions are acceptable.  For example, the er-

rors in refractive index for the tests shown on Figures 3-5 did not exceed 20% for k(λi)

and 0.02 for n(λi).

We conducted a series of tests to verify our algorithm and settings regarding the

smoothness constraints.  Indeed, using overdetermined and/or inadequate constraints

may result in smoothing out real (and possibly important) features of the retrieved

aerosol characteristics (in particular the particle size distribution).  The tests have shown

that the values of the Lagrange multipliers, recommended in Table 3, allow one to ob-

tain satisfactory results for any mono-, bi- or tri-modal aerosol particle size distribution.

Every mode of particle size distribution which were employed in our tests was assumed

to be as narrow as the narrowest mode given by Tanré et al. [1999].  For example, Fig. 5

shows a successful retrieval of a small feature in the size distribution (a third intermedi-

ate size aerosol mode), which was obtained using constraints similar to the ones applied

in the tests without this feature (Figures 3-4).

Figures 6-8 illustrate the retrievals of particle size distribution with constraining

first, second or third derivatives.  The results look good for the values of the Lagrange

multipliers given in Table 3.  Moreover, even if significantly higher values of γ3 are used

(up to γ3 = 0.01) acceptable results for all cases were obtained.  It is interesting to note

that the intercomparison of retrieval results obtained with different constraints (in
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terms of variations of first, second or third differences) did not show any dramatic dif-

ference for γ3  ≤ 0.01.  For higher values of the Lagrange multiplier γ3, a priori con-

straints forced the retrieved particle size distribution to assume an a priori prescribed

shape (see Eq.(40)): horizontal line (for first differences), an arbitrary straight line (for

second differences) and parabola (for third differences).  In spite of the fact that all con-

straints yielded satisfactory retrievals (for γ3  ≤ 0.01), we have concluded that using sec-

ond or third differences is more appropriate for the retrieval of the particle size distri-

bution.  First, the restricting of first differences is the most severe restriction on particle

size distribution (since this a priori assumes that the solution is a horizontal straight

line).  Second, the values of the Lagrange multiplier γ3 for constraining the second or

higher order differences are the same for size distributions of volume, area, radius or

number of particles (for the case when we retrieve the logarithms of dRn/dlnr in the

grid points ri chosen with any equal step ∆ ln ln lnr r r const= − =+i 1 i ).  This can be easily

illustrated using Eqs. (24) and (36b) on an example of the size distributions of particle

volume and number:

ln( ( ) / ln ) ln( ) ln( ) ln ln( ( ) / ln )
ln( ( ) / ln ) ln ln( ( ) / ln )

ln( ( ) / ln ) ln( ( ) / ln )

dV r d r r r dN r d r
dV r d r r dN r d r

dV r d r dN r d r

i+1 i i+1

i i
m

i
m

i  (for m 2)

= + + + ⇒

⇒
= − +

= ≥

4 3 3
1 1

π ∆
∆ ∆ ∆

∆ ∆
.

It should be noted that all illustrations show the results for the retrieval of volume par-

ticle size distribution because dV/dlnr is a standard product of AERONET (Holben et al.

[1998]).  However, the retrieval of any other kind of particle size distribution dRn/dlnr is

also assumed in the algorithm and can be employed depending on user needs.  Eq. (24)

can also be applied rather successfully for transforming the dRi/dlnr to any other distri-

bution dRn/dlnr; however, in general, the direct retrieval of the required dRn/dlnr gives

slightly better accuracy.

The final illustration of the results of our numerical tests relates to the use of it-

erative versus matrix inversion (the methods outlined in Section 3.2.1).  Figure 9 shows

the retrievals of particle size distribution obtained by applying an iterative inversion

and a SVD technique for matrix inversion (with and without applying constraints on

∆ap).  The inversions were obtained without using any a priori smoothness constraints

on the solution and without adding any noise to the simulated radiance.  We obtained

good convergence of Ψ(ap) to a minimum in all three cases and the results were equally
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good for retrieval of k(λi) and n(λi).  However, the results of particle size distribution

retrievals were significantly different.  In spite of the fact that the SVD inversion always

gives an inverse matrix, it forces the appearance of physically unrealistic (but optically

indistinguishable) oscillations (Figure 9).  Using an iterative inversion always gives an

appropriate solution without any inversion modification, while requiring a longer time

for convergence.  The SVD technique coupled with the Levenberg-Marquardt type con-

straints on ∆ap (included according to Eqs. (45)-(46)) appeared to be practically the most

efficient way of implementing the inversion.  Indeed, the retrieval result is rather

smooth and the retrieval is faster than for the iterative inversion.  Thus, we have

adopted the SVD technique with constraints on ∆ap (Eqs. (45)-(46)) as the recommended

way of implementing the inversion in our algorithm.

Application to real measurements

The purpose of our development is to make the code perform  a reliable inver-

sion of the measurements.  However, we have thus far illustrated the performance of

the inversion by inverting simulated atmospheric radiances.  The difference between

simulated and real measurements may contain various uncertainties that can affect the

retrieval results.  The random noise used in our tests does not reflect the diversity of all

uncertainties present  in real data.  To understand the accuracy of inverting real data

some special analysis is needed.  However, such analysis requires extensive studies re-

lated to information content of particular measurements rather than to the design of

the inversion.  The quality assessments of aerosol optical properties retrieved using

AERONET spectral optical thickness and atmospheric radiance measurements are given

in the paper by Dubovik et al. [1999].   In the current paper we limit ourselves to a single

example showing the practical capability of simultaneous retrievals  of aerosol particle

size distribution and wavelength dependent refractive index from Sun and sky radiance

obtained using AERONET radiometers.  For this illustration we have chosen observa-

tions of different kinds of aerosols (biomass burning and urban aerosol) with similar

wavelength dependence of optical thickness, α = 1 5.  (τ λ λ α( ) −~ ).  Figures 10-11 show

the retrieval results for urban aerosol measured in hazy conditions at the Goddard

Space Flight Center and for biomass burning smoke measured in Cuiabá (Brazil) in dif-

ferent years (1993 and 1995).  The particle size distribution is dominated by fine particles
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in all cases.  At the same time, some differences in dV/dlnr can also be clearly seen.  It is

important to note that retrievals show very strong differences between biomass burn-

ing and urban aerosols in the values of real and imaginary parts of the refractive index.

Indeed, n for urban aerosol at GSFC ranges between 1.33 and 1.40 (i.e., close to the val-

ues of n for water), whereas smoke retrieved values of n are significantly higher than

1.4.  This may be the results of much greater hygroscopic growth of particles with in-

creasing humidity for mid-Atlantic US pollution versus Brazilian smoke [Kotchenruther

and Hobbs, 1998].  As expected, the values of the imaginary part of the refractive index

are more than ten times higher for smoke than for urban aerosol.  The values of single

scattering albedo are close to unity for urban aerosol and significantly smaller for

smoke.  Moreover, the wavelength dependencies of ω λ0
aer ( ) obtained for smoke in 1993

and 1995 years are different for some cases (slightly increases with wavelength for aged

smoke in 1995).  This result qualitatively agrees with the results of theω λ0
aer ( ) retrievals

obtained by independent techniques also for Cuiabá, Brazil in 1995 (Chu et al. [1999];

Martins et al. [personal communication]; Dubovik et al. [1998b]).  The retrieved k(λi) for

observations of smoke at Cuiabá, Brazil in 1995 show a strong decrease with wave-

length.  This is in good agreement with the results of the discussion given in the paper

by Dubovik et al. [1998b].  It should be noted that retrievals using our algorithm for

Cuiabá, Brazil in 1995 for some days other than those illustrated in Figures 10-11 also

show k(λi)  decreasing with wavelengths for aged smoke.  At the same time ω λ0
aer ( ) is

almost wavelength independent.

These examples thus show that by applying our inversion algorithm we were

able to derive more detailed information from Sun and sky radiance measurement

from AERONET radiometers than with procedures that were previously employed for

the retrieval of aerosol optical properties from AERONET measurements (see Holben et

al. [1998]).

6.  Conclusion
A flexible algorithm for inverting complex sets of measured radiative and a priori

known aerosol characteristics has been developed and implemented for the interpreta-

tion of ground-based measurements of Sun and sky radiance.  The algorithm retrieves

the particle size distribution over a wide range of sizes (0.05 −15 µm) together with
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spectrally dependent complex refractive index and single scattering albedo.

To achieve flexibility of the algorithm  we considered forward modeling and nu-

merical inversion as two complementary but relatively independent components of the

retrieval algorithm.  The modeling of atmospheric radiance is performed by publicly

available discrete ordinates radiative transfer codes for a multi-layered plane-parallel

atmosphere.  Aerosol microstructure is incorporated in the inversion scheme by as-

suming homogeneous Mie scattering spheres.  The possibility of different kinds of par-

ticle size distribution  (volume, area, radius or number) was discussed and included in

the algorithm.

The strategy of statistical optimization of multi-source data, such as different

type of measurements as well as a priori knowledge, was elaborated point by point.

Accounting for different levels of input data accuracy and the non-negativity of meas-

ured and retrieved parameters in the optimized inversion was discussed.  We outlined

the operational alternatives of assuming either normal or log-normal noise distribu-

tions in the radiance measurements, i.e., using either absolute values of Sun and sky ra-

diance or their logarithms.  The associated covariance matrices were presented.  Simi-

larly, we emphasized the differences of retrieving logarithms or absolute values of par-

ticle size distribution and real and imaginary parts of the refractive index.

The statistical concept of evaluating values of the Lagrange multiplier for includ-

ing both accessory measurements and a priori constraints was described.  This concept

has been applied to determining measurement weights of spectral optical thickness and

angular measurements of sky radiance in our procedure of simultaneous fitting of these

characteristics.  The results of this analysis are summarized in Table 2.  Based on the

same concept, we defined values of the Lagrange multiplier for all a priori constraints

employed in the algorithm.  Namely, we have utilized constraints of variability on the

particle size distribution and constraints on the spectral variability of real and imaginary

parts of refractive index.  For this purpose, we applied limitations on the norm of the

first, second and third differences of the particle size distribution.  In the same way we

restricted the norm of the first and second derivatives of the variability of refractive in-

dex with wavelength.  For evaluating the values of the corresponding Lagrange multi-

plier, we analyzed the maximum changes in atmospheric particle size distribution, as

well as maximum spectral variability of the refractive index (both real and imaginary
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parts).  Table 3 summarizes applying a priori constraints.

Tables 2 and 3 show the recommended and the alternative setting for inverting

measurements of spectral optical thickness and sky radiance together with a priori con-

straints.  Table 3 also shows alternative a priori constraints for limiting differences (de-

rivatives) of different orders.  According to our results, these constraints provide almost

equivalent retrieval efficiencies.  Nevertheless, for a number of reasons, we recommend

using second or third differences for the smoothing of retrieved particle size distribu-

tions.

We have examined the practical efficiency of implementing numerical fitting by

diverse mathematical techniques.  Particular attention has been devoted to considering

differences between methods using matrix and iterative inversion.  Improving the con-

vergence of nonlinear fitting by applying Levenberg-Marquardt or steepest descent

types of iterations were studied.  As a result we have outlined two alternatives: (i) com-

bined linear iterations or (ii) matrix inversion using singular value decomposition.  Both

of these methods give reliable convergence.  The matrix inversion is more rapid but re-

quires organizing the Levenberg-Marquardt type iterations to obtain a stable result.

We have done a series of numerical tests for both checking the efficiency of the

algorithm in general and for each particular algorithm setting.  In the tests we inverted

simulated ground-based measurements of Sun and sky radiance at the wavelengths

and angles defined according to the measurement protocol established for AERONET

radiometers.  The results have shown that both particle size distribution and the spec-

trally dependent parts of the complex refractive index can be derived, with reasonable

accuracy, from the ground-based measurements of Sun and sky radiance.  Moreover,

these tests have shown that the method is sufficiently sensitive to observe important

minor features in spectral dependencies of the real and imaginary parts of the aerosol

refractive index and, accordingly, in the spectral dependence of single scattering albedo.

The retrieval algorithm is currently being employed for operational use by the

AERONET project.  The results of these retrievals can be found on the AERONET pro-

ject web page (http://aeronet.gsfc.nasa.gov:8080) and some illustrations are given in

the text.  The paper by Dubovik et al. [1999] discusses the stability of retrieval results to

the diverse errors occurring in AERONET measurements.
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Appendix  A:  Derivation of linear correction ∆âp  with noise optimization

In order to define a linear correction ∆âp , we can consider ∆fk(∆ap) as a linear

functions of ∆ap.  Neglecting all terms of second or higher order in Eq. (18), we can

write:

f a f a U a a f U a
a ak

*
k

p
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p
k
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The correction ∆âp  can be found with accounting for presenting noise as a value ∆âp

corresponding to the minimum of the quadratic form Ψ( ∆âp) (defined in a similar

manner to Eq. (13)):
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The minimum of this quadratic form corresponds to the vector ∆âp  that yields a zero

gradient vector ∇ ( )Ψ ∆ap  :
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The gradient of the quadratic form Ψ( ∆âp) is a sum of the gradients of the following K

terms:

∇ ( ) = ∇ ( )
=

∑Ψ ∆ Ψ ∆a ap
k k

p

k

K

  
1
2 1

γ . (4A)

The gradient of each quadratic form ∇ ( )Ψ ∆k
pa  can be written as follows:

∇ ( ) = ( ) ( ) ( ) − ( ) ( ) ( )− −Ψ ∆ ∆k
p

k,

T

k k, k,

T

k k
*   2 p p pa U W U U W f

a a a
2

1 1 . (5A)

Using Eqs. (4A)-(5A) we can write Eq. (3A) as below:

         k k,
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K
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a a a( ) ( ) ( )





− ( ) ( ) ( )





=−

=

−

=
∑ ∑1

1

1

1

∆ ∆ . (6A)

The detailed derivation of equation (6A) (for the case of K = 1) can be found elsewhere

in numerous books on statistical estimations (cf. Seber [1977]), Tarantola, [1987]).  Thus,

deriving ∆âp  from Eq. (6A) and using it to obtain âp+1  by means of Eq. (17a) permits the

definition of a nonlinear process for deriving a statistically optimum solution of Eq. (9).

Appendix  B:  Including a priori estimates ∆â* in the retrieval of ∆âp

In order to improve the convergence of the retrieval process (given by Eqs. (17)
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and (6A)) we can  limit the length of ∆âp  by assuming a vector of a priori estimates for

∆â*, i.e., we add one more constraining equation:

∆ ∆ ∆∆a a a
* p= + , (1B),

where ∆∆a  are normally distributed errors with zero means and covariance matrix C a∆ .

Therefore, the PDF of the estimates ∆â* is defined as:

P ∆ ∆ ∆ ∆ ∆ ∆∆a a a a C a aa
p * p * T p * exp -

1
2

( ) −( ) ( ) −( )





−
~

1
. (2B)

Since, Eq. (1B) restricts only the value of the correction ∆âp  but not the value of the un-

known parameter âp  itself, this constraint is only important for obtaining corrections

∆âp .  In order to be consistent with this added constraint we add an additional K+1th

term to the quadratic form Ψ( ∆âp ) and instead of Eq. (4A) we can write:

∇ ( ) = ∇ ( ) + ∇ ( )
=

∑Ψ ∆ Ψ ∆ Ψ ∆∆ ∆a a aa a
p

k k
p

k

K
p   

1
2

1
21

γ γ , (3B)

where

Ψ ∆ ∆ ∆ ∆ ∆∆ ∆a aa a a W a a( ) = −( ) ( ) −( )−
 p * T p *1

. (4B)

The gradient of this quadratic form can be obtained using an expression similar to Eq.

(5A):

∇ ( ) = ( ) − ( ) ( )− −Ψ ∆ ∆ ∆∆ ∆ ∆a a aa W a W ap p *   2 2
1 1

. (5B)

Thus, the vector ∆âp  which minimizes the quadratic form Ψ( ∆âp ) corresponds to the

solution of the following equation:
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Appendix  C: Derivation of Chahine’s formula

The method of Chahine [1968] involves the solution of the linear system

I x K x( ) =   by non-linear iterations (  
i

p 1

i

p
 i

*
i
px x I I+

=




 ).  The utility of this method is lim-

ited by the fact that the matrix K is square (i.e., the numbers of initial characteristics I j

and unknowns xi are equal) , when initial characteristics I j and unknowns xi are posi-
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tively defined.  Also, the matrix K must be square and diagonally dominant in order

that convergence be achieved.  In Chahine’s iterative approach, the solution vector is re-

stricted to positive and smooth values, thereby eliminating the negative and highly os-

cillatory solutions typical of linear matrix inversion.

Analyzing Chahine’s formula, one can see that this formula is very different with

both matrix inversion by Eqs. (20)-(21) and linear iterations by Eq. (22).  Namely,

Chahine’s formula is nonlinear and includes multiplication and division instead of addi-

tion and subtraction in the linear methods.  The concept of statistical optimization of the

inversion and retrieval of non-negative values (Section 4.1.2) prescribes that the initially

linear system should be solved in logarithmic space:

I K x* ln ln ln , ln ,..., ln= ⇒ = ( )∗        j j n
I I x x x

1 1
. (1C)

This non-linear system can be solved by Newtonian iterations similar to Eq. (20a):

ln ˆ ln ˆ ln ˆ

ln ˆ ln ln *

x x x

x U I I

p 1 p p

p
p

-1 p
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= ( ) −( )
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Matrix Up contains the first derivatives, which for I x K x( ) =  can be expressed as follows:

U
x

p ji

j

i

ji

j
p i

p ji i
p

jk k
p

k=1

nln
  

 

 p

{ } = = =
∑

∂
∂

ln

ˆ

I

x

K

I
x

K x

K x
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Using Chahine’s condition of a diagonally dominant matrix K, we can now approximate

Up by the unit matrix, i.e.,

for  >>   ,  jj jj j p  K K ′≠ ≈U 1. (4C)

Substituting matrix (4C) in Eq.(2C) we arrive at the formula proposed  by Chahine

[1968]:

ln ˆ ln ˆ ln ln *x x I Ip 1 p p

i

p 1

i

p
 i

*

i
p

 -    + +
=

















= −( ) ⇒ x x I

I
. (5C)

Chahine’s method converges for any diagonally dominant matrix K (i.e.,   >  jj jj jK K ′≠ ),

although the approximation for Eq. (4C) is correct only for a diagonally dominant ma-

trix K where the diagonal dominance is strong (i.e.,    jj jj jK K>> ′≠ ).  In this regard, the

non-linear univariate relaxation of Chahine is formally similar to the standard linear

Gauss-Seidel algorithm used for solving systems of equations and which always con-
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verges if the matrix K is diagonally dominant (e.g. see Ortega [1988]).

Appendix D:  Statistical derivation of the Twomey-Chahine formula

The generalization of Chahine’s formula was the objective of a number of inver-

sion studies, because the convergence conditions associated with that method (square

and diagonally dominant matrix K) seriously restrict its application.  The absence of a

clear strategy which exploits the added information content of a priori and accessory

data is an additional reason for seeking out alternatives to the Chahine technique.

The first non-linear Chahine’s like formula (which is widely known in atmos-

pheric studies) was proposed by Twomey [1975] for solving linear overdetermined sys-

tem I x K x( ) =   (m>n):

x x
I

I
Ki i

j
*

j
p ji

j=1

m
p+1 p  1 +      = −















∏ 1 ˜  ,   (1D)

where K̃ ji  denotes the elements of matrix K which are scaled to be less than unity.  Be-

low, we do not repeat the original methodology for deriving these iterations, (which

can be found in Twomey [1975,1979]).  Rather we try to understand the Chahine ap-

proach in a fashion consistent with the idea of the present paper (Section 3) inasmuch as

we consider the solution as a noise optimization procedure.  For positively defined Ij

and xi we accordingly assume a log-normal noise distribution.  The solution of the sys-

tem I x K x( ) = ( ) +×m n   ∆  in logarithmic space then corresponds to the minimum of the

quadratic form:

Ψ ln ln ln ln lnlnx I I W I II
p p * T

 
p *   ( ) = −( ) −( )( )−1

2
1 . (2D)

According to the discussion in Section 3.2 the minimum of the above residual can be ob-

tained by the Levenberg-Marquardt procedure and can be easily reduced to the steep-

est descent method Eq. (22b):

ln ˆ ln ˆ ln ˆ ln lnln
*x x x U W I Ix I

p 1 p p
=

p p
p
T

 
p

  -  t   -  t  p+ ( ) ( )−= ∇ −( )Ψ 1 . (3D)

Equation (3D) is already quite similar to Chahine like iterations, since it restricts the solu-

tion to be positively defined and since no complicated matrix inversion is involved (the

weight matrix is diagonal in most of cases).  To emphasize the similarity between Eq.

(3D) and Eq. (1D) we rewrite Eq. (3B) in terms of xi  and I j:
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˜
lnK U W I= ( )−

p
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For an appropriate initial guess of ln - lnj
*

j
pI I( )  (which must be < 1), Eq. (28a) can be ap-

plied We can, as well, approximate the exponents in Eq. (5D) by the two first terms of a

Taylor expansion ( exp( )∆ ∆ ∆a a a= + + ( )1 2o ).  Consequently, Eq. (5D) can be transformed

into the form of Eq.(1D):
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It should be noted that according to Eq. (5D) the matrix K̃ U= p
T  given the common as-

sumption of a unity matrix being used as the weight matrix ( W 1Iln = , see Table 2).  The

elements of this matrix are naturally restricted to be less that unity (see Eq. (3C)).  The

multiplier t p  can be considered as a Levenberg-Marquardt multiplier, and can accord-

ingly be chosen, in a manner similar how it is performed in Levenberg-Marquardt

method, ( t p≤ 1) in order to provide monotonic convergence.  Similar coefficients or op-

erations restricting changes of parameters at each step were used in applying Eq. (1D)

to concrete inversions (Trakhovsky  and Shettle [1986],  Dubovik et al. [1995]).
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Figure captions
Fig.1. The results (particle size distribution) of the sensitivity test on aerosol optical

properties retrieval from simulated sky-radiance and optical thickness both

without and with random noise added.  Particle size distribution dV/dlnr for

biomass burning aerosol [Remer et al., 1998] is modeled by a bi-modal log-

normal function with parameters: rv1 = 0.132 µm; rv2 = 4.5 µm; σ1 = 0.4, σ2 =

0.6; Cv1/Cv2 = 4 (τext(440) = 0.5).

Fig. 2. The results (single scattering albedo, real and imaginary parts of refractive in-

dex) of the sensitivity test on aerosol optical properties retrieval from simu-

lated sky-radiance and optical thickness both without and with random noise

added.  Real part of the real part of refractive index for biomass burning aero-

sol is modeled according to the results by Yamasoe et al. [1998]: n(440) = 1.53,

n(670) = 1.55, n(870) = 1.59, n(1020) = 1.58.

Fig.3. Numerical test results of the comparison of retrievals of size distribution by

three different approaches (size distribution dominated by large particles),

where the radiance is perturbed by random noise: (a) aerosol particle size dis-

tribution retrieval (refractive index is fixed) without logarithmic transforma-

tion (f1(Θ;λ) = I(Θ;λ)); f2(λ) = τ(λ) and ai = dV(ri)/dlnr); (b) aerosol particle size

distribution retrieval (refractive index is fixed) under logarithmic transforma-

tion (f1(Θ;λ) = lnI(Θ;λ)); f2(λ) = lnτ(λ) and ai = ln(dV(ri)/dlnr)); (c) aerosol parti-

cle size distribution retrieval (refractive index is retrieved) under logarithmic

transformation (f1(Θ;λ) = lnI(Θ;λ)); f2(λ) = lnτ(λ) and ai = ln(dV(ri)/dlnr)).  The

radiance is perturbed by random noise (variances: 0.05% for ∆I(Θ;λ)/I(Θ;λ)

and 0.01 for ∆τ(λ)).

Fig.4. Same as Fig. 3 but for an aerosol size distribution dominated by small parti-

cles.

Fig.5. Same as Fig. 3 but with an aerosol size distribution where large and small par-

ticles are comparably represented with a minor presence of particles in the

middle size range.

Fig. 6. The illustration of size distribution retrieval results with constraining the first

differences of ai = ln(dV(ri)/dlnr).

Fig. 7. The illustration of size distribution retrieval results with constraining the sec-
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ond differences of ai = ln(dV(ri)/dlnr).

Fig. 8. The illustration of size distribution retrieval results with constraining the third

differences of ai = ln(dV(ri)/dlnr).

Fig. 9. An illustration of using different mathematical techniques for minimization

(no a priori constraints are used).

Fig. 10. An application of the algorithm for particle size distribution retrieval from

sky-radiance and optical thickness measured by AERONET.  The values of

plotted particle size distribution are scaled to the values corresponding to

τ(440) = 1.  The illustrated retrievals were obtained for the observations with

similar wavelength dependence of optical thickness (α = 1 5. ).

Fig. 11. An application of the algorithm for single scattering albedo, real and imagi-

nary parts of refractive index retrieval from sky-radiance and optical thickness

measured by AERONET.
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